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I ABSTRACT

I
This thesis is divided into two parts. In the first part, the problem of signal detection in

fractional Gaussian noise is considered. To facilitate the study of this problem, several results

3 related to the reproducing kernel Hilbert space of fractional Brownian motion are presented.

In particular, this reproducing kernel Hilbert space is characterized completely, and an alterna-

tive characterization for the restriction of this class of functions to a compact interval [0,T] is

3 given. Infinite-interval whitening filters for fractional Brownian motion are also developed.

Application of these results to the signal detection problem yields necessary and sufficient

conditions for a deterministic or stochastic signal to produce a nonsingular shift when embed-

3 ded in additive fractional Gaussian noise. Also, a formula for the likelihood ratio correspond-

3 ing to any deterministic nonsingular shift is developed. Finally, some results concerning

detector performance in the presence of additive fractional Gaussian noise are presented.

I In the second part of the thesis, the application of reproducing kernel Hilbert space

1 theory to the problems of robust detection and estimation is investigated. It is shown that this

approach provides a general and unified framework in which to analyze the problems of L 2

estimation, matched filtering, and quadratic detection in the presence of uncertainties regarding

3 the second-order structure of the random processes involved. Minimax robust solutions to

these problems are characterized completely, and some results concerning existence of robust

solutions are presented.I
I
I
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I CHAPTER 1I

3 INTRODUCTION

In this thesis, we consider a variety of problems in the area of statistical signal process-

3 ing. The work is divided into two relatively unrelated parts, the common factor being the

application of reproducing kernel Hilbert space (RKHS) theory to the various problems con-

sidered. Since each part of the thesis is essentially self-contained, each comprising a separate

3 chapter, we present here only some brief introductory remarks and an overview of the thesis.

3 Each of the two major chapters includes a more complete introduction to the material

presented.

I In the first part of the thesis, we consider the problem of communication in the presence

3 of noise displaying strong long-term dependence. We are motivated to consider this problem

by the prevalence of natural phenomena that exhibit behavior indicative of such dependence.

Among the many physical processes exhibiting such behavior are river flows, frequency

3 fluctuations in oscillators, current fluctuations in semiconductors, and errors on communica-

tions channels. Given the ubiquitous nature of phenomena displaying long-term dependence,

it seems desirable to consider the problem of communication in the presence of strongly

I dependent noise. We consider one aspect of this problem, namely, signal detection in the

3 presence of additive, strongly dependent noise, and we adopt as our noise modei the class of

random processes known as fractional Brownian motions and the associated derivative

I processes referred to as fractional Gaussian noises.

3 In the second part of the thesis, we consider the problems of robust L 2 estimation,

matched filtering, and quadratic detection in the presence of uncertainty regarding the



I

statistical structure of the random processes involved. In recent years, the game-theoretic I
minimax approach to designing robust detection and estimation procedures has been studied 3
by many authors. We also employ a minimax strategy, but we formulate and analyze the

robust detection and estimation problems in an RKHS context. This approach provides a gen-

eral and unified framework in which to analyze these problems and also clearly reveals the

underlying similarities of the problems.

The thesis is organized as follows. In Chapter 2, we give a brief review of the relevant

RKHS theory. In Chapter 3, we study the problem of signal detection in fractional Gaussian I
noise, and in Chapter 4, we consider the robust detection and estimation problems. In 3
Chapter 5, we present some concluding remarks. U

3
I
I
I
I
I
I
I
I
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I CHAPTER 2

3 REVIEW OF REPRODUCING KERNEL HILBERT SPACE RESULTS

UIn subsequent chapters of this thesis, we make frequent use of some basic results from

3 the theory of reproducing kernel Hilbert spaces. We give below a brief review of these

results. For a thorough introduction to the subject, see, for example, [74].

Let I be any index set. The term covariance function refers to any symmetric,

nonnegative-definite function K: 12 - C Associated with any such covariance function,

there is a unique Hilbert space H (K) of functions defined on I such that, for all t E I and all

f e M(K),

SK(.,t) e H (K),

* and

3 f(t) K (-,t ),(K).

5 This function space is called the reproducing kernel Hilbert space, or RKHS, with reproduc-

ing kernel K, and it is well-known (see [1], §1.2) that H (K) consists of functions f: I -- d

U of the formI N

f ( ,i }1 c (, (ti ) ! I,

and their limits under the norm

I Vtl2 -(K) OijK(tjjj).I i .j=I

Note that norm convergence in H (K) implies pointwise convergence on I since, for all t r I

IU
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and all f ,g E H (K), 3
If(t)-g(t) = I((f -g), K(-,I B(K)I 3

S hf - gJIM(K) K(tt). U
Given any two RKHSs H(K o) and H(K 1 ) defined on the index set !, the direct product

space H (K0) 0 H (K I) consists of functions g: J2 - C of the form 3
g(.,*) , 7NijKo(.,ti)Kl(*,tj), NI

i.j=l

and their limits under the norm I
N N1IiM2ll () = Icx - "- yjjyijKo~tk'ti)Kj(tt'tj )"

i.j=l k.1=1

It follows (see [1], §1.8) that H(K o) @H(Kj) is itself an RKHS with reproducing kernel I

K((t 1 ,T); (2,,)) = K o(t 1 ,t 2K (,t.2), (ti,; i ) J2. 3
If X A (X(t); r e I) is a stochastic process with covariance function Kx and mean 3

function m e H(Kx), then H(X) __ H(Kx) is congruent (i.e., isometrically isomorphic) to

the Hilbert space L 2(X) spanned by the random variables {X(t), t I (see [48], §2). For

any g e H(X), the corresponding element in L2(X) is usually denoted by \X, g),,X and is 3
characterized by the property that 3

g (t) = Co( (t), 3X g/(x)

It follows that, for all t e I and g ,h e H(Kx), 3
1X, K x(',t ) Ax = xt), 3

I
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EX, g \(X) \m 1 ) (2.1.2)I
and

I
I I , x, /r~x)=\h, g\(2.1.3)

Coy g\/X 1 0N X, \/X f\1F() A(

For our purposes, we will often take I itself to be a Hilbert space H0 . For example, H 0

might be L 2(IR), the space of real-valued functions that are square-integrable with respect to

I . Lebesgue measure on R. In this case, the observations are regarded as a generalized random

process; that is, X is regarded as a linear operator mapping H 0 into the space of square-

integrable random variables on some probability space. The space L 2(X) then consists of

I mean-square limits of random variables of the form X(f ), f e Mo, and a covariance function

3 is a bilinear form K: H 2 -+ R. In fact, we will assume that all covariance functions are

bounded bilinear forms so that they are generated by covariance operators on H 0 ; that is, for

I allf,g = H o,

SK(fg) = E(X(f)X(g)} =4, Kg\MO,

3 where K: H o -- H o is bounded, linear, self-adjoint, and positive (see [14], Lemma X.2.2).

The RKHS corresponding to such a covariance function (denoted by H (K) as well as H (K))

consists of bounded linear functionals s: HO -+ R of the form

s(-) Kg\o, g Mo,

I and their limits under the norm

I IIs I12t(K) = (, Kg)\Io,

I
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Equivalently (see [48], §9), H (K) consists of functionals s of the form I

s (f)oK~fS' 0  WAS',, 3
where K is the square root of the operator K and S e H 0 is contained in the closure of the 3
range of K. The norm of s in i (K) is then

Of course, appealing to the congruence between Mo and its dual MOO we could just as well

say that H(K) consists of functions s e H 0 of the form s = KS, where S is contained in

the closure of the range of K. While this is not technically correct (since H (K) c H;), it 3
is a useful way of thinking, and we will often blur the distinction between functions and func-

tionals by writing statements such as U
Ss(f o)= Vs1, f e O.

The following two results are useful for characterizing RKHSs and finding canonical 3
representations of stochastic processes. Proofs can be found, for example, in [20].

Theorem 2.1.1: Let I be any index set and let K be a covariance function defined on 1.

Suppose there exists a measure space (AB,v) and a set of functions {ft; t e I) L 2(v) 3
such that

K(s,t) = ff,3()f-(X)dv(X), V (s,t) 6 12.

Then H (K) consists of functions of the form 3
g (t) =f .f()Q -X v(%), t 6 1,A I

U
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where § e span(ft; t e I}. Further, for all g ,h e H (K),

~, h~ =x
A

I Theorem 2.1.2: If X (X (t); t e I) is a zero-mean stochastic process with covariance

function Kx such that, as above,

K x(s ,t) =f d ; ) (st) 6 12,
A

then there exists an orthogonal process Zx on A with associated measure v such that

X II X = ff, (%),dZ x(), Vt eI,I A

3 and L2(X) = L2(Zx) if and only if (ft; t e I) spans L2(v). Further, for all g e H(X),

'X, 9 ,(X) P Xd O)U A

m where g is given by Theorem 2.1.1.

The final two results of this section relate RKHS theory to hypothesis testing. Theorem

1 2.1.3 is well-known, and excellent discussions of it can be found in [21] and [22]. Theorem

3 2.1.4 is due to Oodaira [45].

Theorem 2.1.3: Suppose that I is a separable metric space and X A {X (t); t e I) is

Gaussian with continuous covariance function Kx. The hypothesis testing problem:U
H0 : X has mean zero

m HI: X has mean function m,

I



8'

is nonsingular if and only if m e H (X), in which case, the likelihood ratio is given by I

L(X) = exp XMx N -X ,M, M \1X)] I

Theorem 2.1.4: Let I be a separable metric space and let X A (X (t); t e I) be a Gaus- I
sian process. Consider the following hypothesis testing problem:

H0: X has mean zero and continuous covariance function Ko

vers$usI

H: X has mean function m1 and continuous covariance function K . I
This problem is nonsingular if and only if the following three conditions are satisfied.

(i) (K I - Ko) e H(Ko) Q H(Ko). I

(ii) H (Ko) = H (K 1) (in the set theoretic sense), or equivalently, there exist constants U
0 < c <C < - such that (CK O - K1) and (K1 - cK 0) are both nonnegative 3
definite. (This is often abbreviated cK o < K, < CK0 .)

I

I
I
I
I
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I 'CHAPTER 3

SIGNAL DETECTION IN FRACTIONAL GAUSSIAN NOISE

I
3.1. Introduction

In statistical signal processing applications, the lack of independence between observa-

tions has traditionally been handled by modeling the data as an ARMA process with relatively

few parameters. Unfortunately, there are many physical processes that exhibit strong, posi-

tive, long-term correlations, which are not well-modeled by such ARMA processes. Such

long-term dependence is very often observed, for example, in geophysical data, where it takes

the form of long periods of high or low values (see [18] and the references cited therein).

Similarly, errors on communications channels, "... appear to be grouped in bursts, which are

I in turn grouped in bursts, etc." [33]. This tendency for low or high values to be followed by

3 other low or high values is often referred to as the Joseph effect. It is indicative of a process

possessing a long memory and is perhaps best explained in terms of the spectral behavior of

I such a process. In particular, if the observed process is stationary, and the correlations

3 between observations are positive and fall off so slowly that the covariance function is not

integrable, then the spectral density of the process will be unbounded at the origin. The

predominance of low-frequency power is the cause of the Joseph effect.

3 An important class of physical processes exhibiting strong long-term dependence are

those with I/f-type spectral behavior;, that is, spectral densities approximately proportional to

f 1-2H, where f represents frequency and H is a constant in the range A < H < 3/2. This type

I of spectral behavior is observed in a great many different phenomena, including, for example,

I
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the frequency fluctuations in electrical oscillators, the current fluctuations in metal films and I
semiconductor devices [76], and the loudness fluctuations in speech and music [72]. Many of

these 1/f-noises, as they are frequently called, appear to be relatively stationary and Gaussian;

but for values of H a 1, it is not clear how such a spectrum should be interpreted (since no

stationary, L 2 process could possess such a spectrum). Much discussion has been devoted to

this problem (see, for example, [26], [34], and (46]), but it is far from being resolved. For

values of H in the range Ih < H < 1, however, such processes can be modeled as generalized

Gaussian processes or as the (stationary) increments of nonstationary Gaussian processes.

This is, of course, analogous to the relationship between white Gaussian noise and ordinary 3
Brownian motion. In this thesis, we restrict our attention to values of H in this range.

An early attempt at modeling 1/f-noise was made by Barnes and Allan [5], who proposed I
modeling the phase noise in oscillators as a fractional integral of white noise. (See [441 for a 3
discussion of fractional integration and differentiation.) The corresponding 1/f-type frequency

noise would then be modeled by the increments of the phase-noise process. The particular I

fractional integral that Barnes and Allan proposed was 3
t o

1 j(t __TH -AdB(,r), t a 0,3

where (B (t); t a 0) is a Brownian motion. Unfortunately, a process defined in this way does I
not have stationary increments. A later refinement of this model is the fractional Brownian 3
motion (FBM) process introduced by Mandelbrot and Van Ness [36]. This process, which is

discussed in more detail in the sequel, has stationary increments that exhibit I/f-type spectral I

behavior. In fact, in a certain sense, FBM has a stationary derivative, called fractional Gaus- 3
sian noise (FGN), with spectral density equal to f 1-2H, ' < H < 1. In addition to being



I stationary, the increments of FBM are also self-similar; that is, for each a > 0 and t0 e IR,

[BH(to+ac)-BH(t); z e R] ) a H(BH(0); 't R ),

where BK is an FBM and "d" denotes equality of finite-dimensional distributions. Processes

with self-similar and stationary increments have received much attention in recent years since

Uthey possess many interesting properties. In particular, the sample paths of such a process are

fractals as defined in [35]. (For discussions of the various properties of these processes, see,

for example, [27], (28], [42], [43], [60], [611, [62], [63], [64], and [71].) Because of its sim-

plicity and its many interesting properties, FBM has become a popular statistical model. In

addition to being the preeminent model for long-term dependence ([81, [181, (19], [291, and

[37]), it is finding increasing application as a model for image texture ([32], [49], and [50]).

In this chapter, we consider the problem of detecting signals in the presence of additive

UFGN. We begin, in Section 3.2, with a discussion of the properties of FBM, including a

rigorous treatment of FGN. In Section 3.3, we study the reproducing kernel Hilbert space of

FBM. In Section 3.4, we discuss the problem of detecting deterministic signals in FGN, and

Iin Section 3.5, we consider nondeterministic signals. In Section 3.6, we investigate some

3 aspects of detector performance on FGN channels. Section 3.7 contains some concluding

remarks.

3.2. Fractional Brownian Motion and Fractional Gaussian Noise

The class of fractional Brownian motions, or FBMs, was introduced by Mandelbrot and

Van Ness in [36]. In this section we will define this class of processes and discuss some of

their more interesting properties. A more complete development is given in [36].

1
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For purposes of this paper, we will use the following (slightly specialized) version of the

definition given in [36]. Motivation for this definition will be provided below. Let 3
B (B(t); t e R ) be a standard Brownian motion and let ' < H < I. The fractional

Brownian motion process BH _ {B1 (t); t e R ) is defined by I
0 t

BH (r) f ( I t--T I H-" -,, _ I H -,, )dB (r) + I -- % -dB (,),t e R.
= (H +t/2)

(3.2.1)

t 0
(Where, for t < 0, the notation f f" should be interpreted as " -f ".) Clearly, B11 is a zero-

0 t

mean Gaussian process and BH (0) = 0. Notice that if we extend our definition to include I
H = ,we get

BA(t) = B (t). t r R.

In this sense, FBM can be regarded as a generalization of the familiar Brownian motion pro-

cess. It is a generalization that is particularly useful for applications, as we shall see in the I
sequel. 3

The covariance function of Bff is given, after some analysis, by 3
KB,(s,t) =--- Is 12 + It 1H - It-s 1, s,t e R, (3.2.2)

where 3
-r(2-2H)cos(xH) (3.2.3)

VH = Var[B11()] = H(2H-1) 3
It follows from this covariance structure that the increments of BH are stationary and 3

self-similar; that is, for each a > 0 and t o e R, I
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I (BH (to+ar) - BH(to); T e R) A all {BH('r): ( T e ?, (3.2.4)

where "A" denotes equality of finite-dimensional distributions. This property implies that B,,

is statistically the same on all time scales. This also implies that the sample paths of BH are

fractals, as defined in [35].

I From (3.2.4) it follows that, for any a > 0, the process

BH,8 _ BH (t+8) - B (t); t e P? is a zero-mean, stationary Gaussian process with

covariance function

KB()= VH82H-2 H+T 2 H- + -L 1 1?
21 (3.2.5)

I= VH(2H-1)ITl 2H - 2, I'TI :$ 8,

and power spectral density

SBA(C) = R RB.(')e -"'dr, 0 CO) R

(3.2.6)I --- I 1I- 2H 0 < IaI C: 1.

I Equation (3.2.5) implies that the process BH,8 is mixing and ergodic but not strongly mixing

(in the sense of Rosenblatt [55]). Hence, the increments of FBM provide a simple model for

processes with strong long-term dependence. Moreover, (3.2.6) implies that the increments of

I FBM provide a good model for certain processes with 1/f-type spectral behavior. Although it

is not immediately obvious, (3.2.1) represents a fairly natural way to define a process with

this spectral behavior. We present in the following paragraph a heuristic development of the

I definition of FBM.

I
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In order for all increments to be stationary and exhibit 1/f-type spectral behavior, BH  I
should have a zero-mean, stationary Gaussian "derivative" WH with covariance function

Kw,(,r) = VHH(2H-l)1'¢12H =2,  'r e R,

and power spectral density 1

Sw(a) = Iwol W, O0 o I? sJ.

That is, we would like to define BH as , I
BH(t)= 4fWH ()dr, t E R, (3.2.7)0i

where the process WH has the properties described above. Following Barnes and Allan [5],

we define WH to be the (H- 1)th -order fractional integral of white noise, but since white I
noise is defined on all of R, we need to define our fractional integrals accordingly. That is,

we let

SQ 1 t__,T..W(,r)dr, , t e eR, IWHO)-/2) _- I

where W is a standard white noise process. Substituting this expression into (3.2.7) yields 1

t It

BH(t ) = F(H-_/) JJ I " S IH-%W(S)dSdt,

which, upon changing the order of integration, becomes3

I
I
I
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Bi(t r(H-) [I ,-s -AdJ W(s)d + [II-sIH-'d W(s)ds

rI -12 f0 0 t

1 
H-0

f rIt-s I H-% _ Is IH-112)W(s)d +f It-S I H -'AW(s)dS].
r(H+1) o

Rewriting the white noise integrals in terms of a standard Brownian motion B, we get (3.2.1).

The process WH described above is loosely referred to as fractional Gaussian noise, or

I FGN. Clearly, no such process actually exists, but the concept of FGN and its relationship to

FBM can be made rigorous by defining WH as a generalized Gaussian process; that is, as a

linear operator acting on a certain subset of L2(R). Then, if we let I[0,t be the indicator

function of the interval [0,t], we get

I BH(t) = WH(I[0.1), "t e R. (3.2.8)

(Note: for t < 0, we let 1[0.11 -Itg,0.) This is, of course, a generalization of the well-known

relationship between Brownian motion and white noise, and one can define FGN in much the

same way that one can define white noise, as follows.

I Let B again be a standard Brownian motion, and let BH be an FBM derived from B via

(3.2.1). It is well known that there is an orthogonal increments process Z 4 (Z(0O); 0o e R I

with mean zero and variance 1/(2n) such that, for any function f e L 2(LR) with Fourier

I transformf, we have

Sf )dB (t) f 1 (-Q)d (M), (3.2.9)
a - _e

and L2(B) = L2(Z). One can define standard white noise as an operator W: L2 (/R?) --) L(B)

I
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by I

W(f)_f f ( ,4()= (A-O (, f e L2(1).

Now, let us define a new process ZwH - (Zw(0); 0 6 R) by 1

Zw,(wO) _ Mj)XI 1-He dZ(p), -a 1?ZR. (3.2.10)

It follows (see, for example, [2], Chapter 2) that Zw,, is a zero-mean, Gaussian process with

orthogonal increments and associated measure g. given by 1
IIp(A)~-JOIWw A Boe (3.2.11)

Let AH cL 2(R ) be defined as

AH _ (g e L 2(R): g e L 2(pL)). (3.2.12) 1

That is, AH is the subset of functions in L2(R) whose Fourier transforms are square integra-

ble with respect to the measure p.We define the fractional Gaussian noise operator u
WH: AH -+ L 2(Zw) by

- I
WH(g)_ f j(-o)dZw,(ow), g e AH, (3.2.13)

and we will use the notation

It follows immediately from (3.2.13) that, for all f ,g e Am1,

1
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I 1~
Elf. )W (tdt (s)WH s J(-f&{ ),w,()) f (-W)e W())J

jf1(-o)g-T=FoT a)I '"'d 0),

and

i

E ff@)WH(t)dt}=E E{J(s)WH(s)ds}=0

Also, it can be shown (see Appendix A, Lmmas A.1 and A.2) that L1 (R) n L 2(I?) A

and, for any f,g e L 1(? ) i L 2(R ),

1 f/(-o)g-j I( o' - dc= V 1HH(2H-1) f ff(t)g-T 1 TSI H-W2dSdt.2nt -. .._

I Hence, for any f g E L 1(R ) r) L 2(R ), we have

E' ffW H()dt fg (s)W sdf (-<ogTw1o -Hd

a 2 
(3.2.14)

= V H(2H-1) J f ( t )g- TSTIt-s IH-2 dsdt,

I so the operator WHt behaves like a zero-mean, stationary Gaussian process with covariance

3 function Kw, and power spectral density Sw,,,, as previously defined.

It remains to be shown that BH results from W,, via (3.2.8); that is,

I



i
i

, I.
BH () = JWH (Od T = WH (J o]), t r 1.0I

To this end, we recall that

(,r)dc = 1t(-OdW()
" 0 -*X 6 )

= f[0tl( -_(0 )  -He 2 dZ (0)

- 1 a I)I -He - 2 dZ ())

i J (-w)dZ (o)),

where

1..- , ,, sgn(o)XH-A)-I-(o) Ap I_ 2"- . (3.2.15)

ft (co ) Ie AHi

Since (o j e L 2 (i), we have 1, e L 2(R), and it is straightforward to verify that the inverse

Fourier transform of ft is given by I

(3.2.16) 1
It follows that I

I
I
I
I
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* 0 -

= ff(C)dBC)10
_ I~ ( I t -,r I H -1 _ I I H-1,)d8 (_r) + f" I t --_T I H -,IdB()

F(H+ ) ]

as desired.

We close this section with a brief discussion concerning stochastic integration with

Irespect to FBM.

3 Let BHy be an FBM and let {x, }*,= be a sequence of partitions of a compact interval

[a,b ] with mesh size going to zero; that is,

Xtn  = (to, " " ,n: a = to < tj< " ' < n -l < t, = b }

Iwhere
Ilim I n I = lir max (ti - ti -) = 0.

n-) n-+- lsi n

I If f is a bounded function defined on [a ,b], we can define the integral of f with respect to

BH , in the usual L 2-fashion, by

b

Jf()dBH (r)- lim I f(4i)[BH(ti) - BH(ti -l)], 4i E [ti-'ti].
a n" i=1

Of course, the integral is only well-defined if the right-hand limit exists and is the same for

all sequences of partitions (nn I**, with Iin I -4 0. We can also define "improper" integrals

as limits of "proper" ones; for example, if f is bounded and integrable with respect to B1 onU
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all compact intervals [-T,T], then i

f f ( C)dB11 (' T-4 -TMr f fItdH(-. T' > --o _Tm!(>.(>

whenever the right-hand limit exists.

Now, let WH be the FGN corresponding to BH. We wish to establish some relation-

ships between the operator WH and integrals with respect to BH.

Lemma 3.2.1: If (f., } L 1(R ) r L2(R) is a sequence of functions that converges

in L 1(R ) and L 2(1R ) to a function f, then I

lim ff,( )WH(r)dr= fJf ()WH (r)d . (..7 I
Proof: Let g. be the measure defined by (3.2.11). Recall that

21 2 I
E{ Jfn()WH(r)drc- Jf(zr)W1 1 (,)dC o=3 f r f() H(r

2±X f ln (0O))I2 1 (1-2H d w.

Hence, to prove (3.2.17), it is sufficient to show that f,, -+ f in L2(g). To this end, notice

that, since f,, -if in L 1(R) and L2 (R), - uniformly and in L 2(fI). So, for any

E >, I

I
I
I
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I -

+ -f--f (o) -(co)1 2dI 1

e I I 1-2Hdo + e (for sufficiently large n)

I 2-H
x(2-2H)I

Therefore, f, '' f in L 2(J.L) and (3.2.17) follows. M

ILemma 3.2.2: If f is a bounded function, continuous almost everywhere on a compact

3 interval [a,b1, then

b b3 f (?C)dBH (r) = f (,r)WH (?r)d T.
a a

I Proof: Let (n ),*,I, be a sequence of partitions of [a,b ] with I ,, I -- 0. Then

bA

Jf (T)dBH () = tim If (&i)[BO(t,)-BH(ti-0)
a n" i=1

= lim (4) tit_.(T) WH()dc

= lim f fn (,r)WH (Cr)d c,.
n -- W 4.00I

where

I
I i =Now, since f is continuous almost everywhere on [a,b]I, fn - '.fI[a,b] almost everywhere on

I
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R, and, since f is bounded, the dominated convergence theorem implies that f,, fl[ab] inI

LI(R) and L2(R). Hence, I
b -
ff ( )dBH (, ) = lim f f n(,c)WH ()dc

= S [abj]()f ()W(@)d-v (by Lemma 3.2.1)

b

=Jf (,WH( )d-z. m

a

Lemma 3.2.3: Iff L 1 (R) n L 2 (R) is bounded and almost everywhere continuous onI

R, then

ff (c)dBH, ('t) f5 (,z)W (tr)d -. I
Proof: By definition, I

- N
f f()dBH1 ) = li f f(T)d3H( )

_.N--)' -N

= ,-im. f f (')WH ('c)drc (by Lemma 3.2.2)

-lim hf N ( )WH ( r)d', I
where

Clearly, fN -if in L (R and L 2ER), So3

I
I
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f ()dBH('T)= lirn fN(,C)WH(- )dt
N-i'-S- ---

= f f()WH ()dr (by Lemma 3.2.1). 0I
These lemmas are, of course, not exhaustive, but they illustrate that, for sufficiently

I well-behaved functions f, the random variable WH (f) is equivalent to the integral of f with

respect to BH .

3 3.3. RKHS Results for Fractional Brownian Motion

In this section, we characterize the RKHSs for the class of FBMs and present some

related results. In particular, we develop several results concerning the restriction of an FBM

i to a compact index set [0,T], which will be directly applicable to the problem of detecting

3 signals in FGN. We begin by considering the unrestricted FBM process, in which the index

set is R. For this case, we have the following result.

I Theorem 3.3.1: Let BH be an FBM and let p. be the measure defined by (3.2.11). Then

H (BH) consists of functions of the form

= i1 - Te1? (3.3.1)
Ig~~(t) =-_-1 "je lo7) (o'ol-2H do), t 6 R,(3.1i

U where R e L2(g). Further, for all g,h e H (BH),I1
g, ( = 2 f h(o)g-'To) 1 -2H do. (3.3.2)

I
Proof: Let WH be the FGN corresponding to BH and let Zw,, be the orthogonal incre-

I ments process related to W H by (3.2.13). Then

U



24

KB(S,t) = E(BH (s)BH (t) )

I " I
= E J" °()d°cfW ) -

EjfJ~o I[J1w~-[O W, (-) 1W0- H d )3

27C_. 1( JO]&)i[Ot& W 10_ I

It can be shown (see Appendix A, Lemma A.3) that the set of functions e e 1; '
i1)

spans L2(g), so (3.3.1) and (3.3.2) follow by applying Theorem 2.1.1. N I

Theorem 3.3.1 gives a frequency-domain characterization of H(B11 ). The following 3
corollary gives the corresponding time-domain characterization.

Corollary 3.3.2: A function g e H (BH) if and only if there exists g* e L 2(R) such

that I

g(t) f f (S--_)H" T& 1 t 6 R. (3.3.3)

I
Further, for all g ,h e H (BH),

- I
(g, h\u(H,) = J h*(s)g*sd. (3.3.4)

- I
I
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I Proof: By Theorem 3.3.1, g e H(BH) if and only if there exists e e L 2(g) such that,

3 for all t e R,

e3t- g(o7)1 o I -2H dco

Ii" - j i~jisgn(oJ)(H-I)]-d
2z __ 1

I
where

and Icol,,.He (cf. (3.2.15)),

and

I (,j(coXH -1h)1*((0) (--W) I CO I 11-H e2

Clearly, f * e L 2(R), so let g * denote the inverse Fourier transform of * and recall from

I (3.2.16) that the inverse Fourier transform of!t is given by

f ,I('r = 1+ ([.)()(It-TIH - - IlIH- 'A) + I[ot)(,C) Itl- /, I H I?.

I Hence,

I
I
I
I
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g~ W ~ ff(co)iii3(o)d0 I
_= I2x

-~~~ ~~~~~~ ft ( i _tr, ;ig ,)--WR dc tt.cd- g'

0m U

ts

F(H- ) I

which proves (3.3.3). 3
To prove (3.3.4), we proceed in a similar fashion. Let g,h e H(BH) and let 3
e,h e L2(g) be given by Theorem 3.3.1. Then (3.3.2) yields

g, h)on) = h

I o)3 icoI1 n"w)(-)!isn) %-

: j (---w) I (oI .- (e) [ -O) I I
Ge

= 2" jh*(Q() - )d o)  (h*,k* defined as before)

= J h*( )*) d, I,
which proves (3.3.4). 0 I

Remark: Notice that (3.3.3) implies that any function g e H (BH) is differentiable 1

almost everywhere in R and that the derivative g' is the (H- )th-order fractional integral of

. That is, for almost all t r R,

I
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It

g = t) r(H- 1 ) f (t'.)n-2 " (3.3.5)

Functions of the form (3.3.5) are variants of the so-called Riesz potentials, which have been

I widely studied (see, for example, [59]). This representation can be exploited to give various

3 conditions necessary for g e H(BH). For example, it follows from (3.3.5) and a general

_1

form of Young's inequality (see [15], page 232) that g' e L 1- 1 (R). Similarly, from (3.3.1)

we can get a simple sufficient condition for g r H (BH). Letting §' be the Fourier transform

I ofg', it follows from (3.3.1) thatg e H(BH) ifs" e LI(R) and

I I ,g,(0) 12 1co12 H-ld o) <

The following theorem gives an infinite interval whitening filter for FBM.

N Theorem 3.3.3: Let B be a standard Brownian motion and let BH be an FBM derived

3 from B via (3.2.1). Then

0B t (312_/. ) (I t--__T I I I I-"H )dBH ('0) + f 1t -- '/ "-H dBH(). (3.3.6)

I 0

Proof: Again, let WH be the FGN corresponding to BH, ZW, the associated orthogonal

I increments process, and g the measure given by (3.2.11). Also, let Z be the orthogonal incre-

3 ments process related to B by (3.2.9). Then, for all t e R,

U
U
I
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, I
B() =JdB (t)

m If f[Ot (--W)dZ (0)

Sf[oj(--Oc(o) Io 1 -e 2 dZwv(o) (by inverting (3.2.10))
-. ei_ , ,1mn . .U

= - ift(,',-e(Ow()

-. 6 1

f Lit (--w)dZ w,(m),

where

1-e-'l -- sgn(m)(H-A) -

i(co)

Clearly, fe L (j), and it is straightforward to show that f e L 2(R) with -inverse Fourier

transform ft e L 1(R) n L 2(R) given by

f( ) = r H) [I( .o))( -- /2' - ,IM) +I [o,t)(.r)r -], It _ I.A

If we let I

'V N' NV

t f-NNN J f in J I
then fN - f , in L (I?) and L 2(R ), and

I
I
I
I
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B()= Ji(-oWdZw (O)

I -
f .ift ,}wH (,C}dt

I -

rim f fN ((WHb()dc (by lemma 3.2.1)II
=lim fN ()dBH (C) (by lemma 3.2.3)

IN
f f, @)dBH (0

0 t

FB 0 (It.-- I' - I T I'"H)dBH(W +flt--rI')HdBH(C)

We now consider the case of an FBM restricted to a compact index set [0,T]. Let B1,

be an FBM and let BH IT A (BH IT(); t E [0,T]) represent the restriction of BH to [0,T]. It

I is well-known that H(BHIT) must consist entirely of functions in H(B H ) restricted to the

3interval [0,T]. Unfortunately, this is not a very practical characterization, since it is typically

rather difficult to determine from its values on [O,T] whether a particular function can be

I extended to all of R in such a way that the extension is a member of H (BH). Fortunately,

3 there is a more useful description of H (BH IT), as the following theorem shows.

3 Theorem 3.3.4: H (BH IT) consists of functions of the form

3 1 = (H"-1)JfJTHs(-s)H--hdc g-iTh 4'Hds, t e [O,T], (3.3.7)

I where § e L 2([O,T]). Any such function g has a derivative g' almost everywhere in [0,T],

1 and, for almost all t e [0,T],

I
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_ 1 3.

t) = tH d 1 r(t -s)% 1 1 s V,-H g '(s)ds (3.3.8)
dt r/2z-H) 3

Further, for any g,h C (BH IT), 3
T

0

Proof: Since BH, IT is the restriction of BH to [0,T], we have, for all s,t r [0,T], 3
KB.,,(s,t) = I,(s,t)

= - 1 (O '  '(- - ) I o I '-2H d co

VHH(2H-I)fJItOI(a)[OtI(r) r-a I H- 2drd a (by (3.2.14))
003

-r(2-2H )cosrH sf I r-a" 2 H -2d rd a (by (3.2.3)).

The function I er-a I2H-2 can be decomposed as (see [751, Equation (15))

'-- 2H -2 R I"(3/2-H) (on )HlA U I-2H-(a-U )H -2(,-U )H - du.

r(H -12)r(2-2H) 0

Hence, 3

!
!
3
I

• • u m m m ! I ! | || |J l !I
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I KBHTS ,t) r(2-21)cosrH

I It
-r(3I2-H )cosxH Sf~ t JuM a- u HCr0 d

= [rl~1 ]2 f ur) f Ufa4 (,a-U )H-'daj kU2u)H~ ltd

00

I where

-u) r(H- I[)jj(U)' (3.3.10)

It can be shown (see Appendix A, Lemma A.4) that the functions ff,; t r [0,T]) span

I L2([O,T]), so (3.3.7) and (3.3.9) follow from Theorem 2.1.1. To establish (3.3.8), we choose

3 an arbitrary function g e H(B 1 IT) and use (3.3.7) to write

t [t3gQt) = ds-')

It follows that, for almost all t e [O,T],

g'() = F(H- ) tH-f(t-S)H-2S-Hr('3".J.
0

Hence,

I
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-f(t-s))J H("sHs&(S)ds - r (3zH (S)I r(H),1A (SU)H-%11 iigcudu ja
r(/ rt32- 1

-HF0T(H -/2)o

I  fu z1-H g-T7 I(t -S )%H (s-u )H -hds du
r(3/2-H )F(H- h))

tI
f=4 f-_u~"du.
0

Therefore, for almost all t e [0,T], I

tH- r 3 /2H f ttS )11H S 1H g '(s )ds] tH 'k_!jfu1A-Hg-T~dUdr FQ3/2-H )o 0 I

which proves (3.3.8). U 3
We can also find a canonical representation for Bj. IT, different from (3.2.1), which leads

straightforwardly to a finite-interval whitening filter, as follows.

Theorem 3.3.5: Let (fl; t e [0,T]) be as defined in (3.3.10). There exists a process

BT = (BT(t); t - (0,T]), which is a standard Brownian motion on [0,T], such that, for all 3
t e [0,T], 1

T

BH TO = fft(u)dBT(U)3

I t (3.3.11)

(HI-) U V(u )H-d dBT (u),

and I
.3
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BT(t) = r( 3/_ H) f-df(-u -u "H d TH IT(U), (3.3.12)

where the integral in (3.3.12) is to be interpreted as an integral with respect to the orthogonal

I increments process Z7. _ {ZT(t); t e [O,T]) given byI-i
ZrT) 1 (t-dBH I(T), t e [0,T]. (3.313)rT(t)=F/2z-H ) 0I

Proof: From the proof of Theorem 3.3.4, we know that

IT
KBT r(S,)-=ffs(u)f(u)du, V s,t e [0,T].

0

It follows from Theorem 2.1.2 that there exists a zero-mean, orthogonal increments process

B. 4 (BT(t); t e [0,T]) with associated measure Lebesgue measure such that

*T
BH IT(t) = jft(u)dBT(u ).*0

Since the functions (ft; t e [O,T]) span L2([O,T]), Theorem 2.1.2 also guarantees that

I L 2(BH IT) = L2(BT), which implies that BT is Gaussian. Hence, BT, is a zero-mean, Gaus-

3 sian, orthogonal increments process on [0,T] with associated measure Lebesgue measure. It

follows that BT is a standard Brownian motion on [0,T], which proves (3.3.11).I
To prove (3.3.12), we define a new orthogonal increments process

I ZT 4 {Z,(t); t e [0,T]) by

ZT(t)  I e'-H dBT [0,T]. (3.3.14)
0

I This definition implies that

I
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BT (t) = !xTH-'dT,C), t re [0,T, (3.3.15)0U

so (3.3.12) will be proven if we can establish (3.3.13); that is, if we can show that I
zTW - r3_)H) )0--C)" H ) V t e [o,T. U

To this end, let (i,*,j be a sequence of partitions of the interval [0,T] with 17[,,l -4 0.

Then, for all t e [0,T],

T

t- - '  dB - (3 H1 flJ ~ - -')-H(t ) ' -dBH IT(t) Ir( 3/z-H) 0tE)oWH~,, -Hr-) 0-= l li ir 1 I t t xA - [B ( z  \

-- M 3n - 13 " H IT i- H IT L i-1)I
E--W n -- m --H)i=T

T
= lim lir a 1 [ _ " - [f ,(u )]dBT ( u ) (by

- i=1 0

=lirnlin 1j f{l~t~]~ )I.H(U)_ _-.(u)] dBT, (U)U
C-0T nn-.r

idli I-=lir . ir 'tu_l( i)(t- ;) -ii-H (u)-f.,(U)]}dBT (U

T-o (3i-H) f 1(u)]
0 ( i=1

=~ oi -i r( [f fg.)-H 4 i~ (dBT(u)U

/ - (t )1--H - df,,(u ) dBT(u). I
Now, it is straightforward to show that

t
T r i--H TA-H d,) In](Ou-H

0U

whence it follows that I
I
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1 (. , H .dBH IT(X) " = T 1 o" [ ( ../A.-HdJf(u) dBT(U)

0/2 f tfro ( -)-HrIBT -U) j()dT

0 r(m-H"H o

T

1fU 1-HdBT (u)

I =Zr(t) (by (3.3.14)).

I
This establishes (3.3.13) and proves the theorem. N

The previous two theorems admit the following useful corollary.

Corollary 3.3.6: Given any g e HF(BH iT), the corresponding element in L2(Bf IT) is

3 given by

3BH IT, gi(Br) = [r(32_H) ]2 fr [ (t).H &Hg 'Cr)d?]dtf(

3 (3.3.16)

Proof: Let BT and Z. be as in the proof of Theorem 3.3.5. It follows from Theorem

2.1.2 that

(BH IT, g/N(BHr) = f§t)dBTt),
*0

where R e L2([,T]) is given by Theorem 3.3.4. Hence,U
I
U
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T
'BH IT, g/A(BK1) 9 tdBT WtT I

1-H (t-1 H/iH il-4"g'()dr dBr(t) (by (3.3.8))

_ [ r -H )f t --() "H ] g ( )d t a ,T (t) (by (3. .3.15))

_ I ~ ~21_ dit , Hz g(~gdtf(t..0 ),/:..l/_ndBffIT(t) (by (3.3.13)),

which proves (3.3.16). 0 I

Remark: The RKHS H (B IT) was also studied in an early paper by Molcan and Golo-I
soy [38], in which it is claimed thatf e H(B H IT) if and only if f' L 1-H([O,T]). This is

certainly a necessary condition (as discussed in the remark following Corollary 3.3.2) but does

not seem to be sufficient. Molcan and Golosov also give a canonical representation for BH IT ,

which is essentially equivalent to (3.3.11) and (3.3.12); however, the result is presented I
without proof. 3

3.4. Detection of Deterministic Signals in FGN 3
In this section, we consider the problem of detecting a deterministic signal in the pres-

ence of additive FGN on a compact observation interval [0,T]. This corresponds to the fol-

lowing hypothesis testing problem: 3
I
I
I
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3 HO: dY( ) = dBH IT(t), t e [0,T]

3 versus (3.4.1)

HI: dY(t) = s(t)dt + dBH IT(t), t e [0,T],

where Y A (Y(t); t e (0,T]) is the observed process, BH IT is an FBM restricted to [0,T],

and s is a real-valued function defined on [0,T]. Problem (3.4.1) can be stated more

rigorously as

Ho: Y(t) = BH IT(t), t = [0,T]

U versus (3.4.2)

HI: Y(r=m(t)+BHiT(t), te [0,T],T

3 where

t

0

3 We would like to know

3 (i) under what conditions on the signal m is Problem (3.4.2) nonsingular, and

(ii) in the event that (3.4.2) is nonsingular, what is the formula for the likelihood ratio?

We can make use of the results from the preceding section to answer (i) and (ii), as follows.

I Theorem 3.4.1: Problem (3.4.2) is nonsingular if and only if

m(t)= f( H-"d (x--o)H-dr A(qjo;"ndo, 'V t e [0,T], (3.4.4)

-
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where 113 e L2([OT]), and, for almost all t e [O,T], -
[ dt =(W.-H) J(t-,C) -Hr" -m'(r)drj. (3.4.5)

Proof: Since m is real-valued, Y is Gaussian with covariance function K =K

under both hypotheses, so Problem (3.4.2) reduces to I

Ho: Y has mean 
zero

Hi: Y has mean function m.

Hence, by Theorem 2.1.3, (3.4.2) is nonsingular if and only if m e H(Y). Since 3
Ky = KB,,r, we have H(Y) = H(BH IT), so (3.4.4) and (3.4.5) follow immediately from

Theorem 4.4. U

Theorem 3.4.2: If m satisfies (3.4.4) so that Problem (3.4.2) is nonsingular, then the I
likelihood ratio is given by 3

L(Y) =exp Y m\(y)- /2 ,m,m . (3.4.6)

where 3

\im, m 1 ]2 t - dr, (3.4.7)
l = [I(3&-H) 0

and i
I
I
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Y, m\tm - r(3/_iH) ]o

(3.4.8)

Proof: If m satisfies (3.4.4), then m e M1(Y) = H(B1 Tr), and (3.4.6) and (3.4.7) follow

immediately from Theorems- 2.1.3 and 3.3.4, respectively. To prove (3.4.8), we will show

that for any function g e H (Y), \Y, g\ My is given by

/y g \ M _I

2 T t(3.4.9)

Equation (3.4.8) then follows by letting g = m. To prove (3.4.9), it is sufficient to show that

i (eL (2.1. 1))

g( ) = Cov(Y(t), (g)}

= E{[Y (t)-E (Y (t)) ll(g )-E( (g)}

= E BH IT (t)[€()-E{10(9 ))1]I-
However, it is clear that

12 UT]
(g )-E ((g) = [.(3 f t2H -1 [(t--z)"-H -g'()d df(t--) '-H T'-HdBH1 IT(t)

= IBH IT', g1aF (Br) (by (3.3.16)).

Hence,

I
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E{BH IT( t) E(2 = Coy {BH IT(t), (BH .IgT I(B.,,)

= g W) (by (2.1.1)), II
and (3.4.9) follows. •

For the sake of completeness, we give below a corollary to Theorem 3.4.1, which is sim- i
ply a restatement in terms of the signal s = m'. The results of Theorem 3.4.2 are already in

terms of n' so no restatement is given.

Corollary 3.4.3: Problem (3.4.1) is nonsingular if and only if, for almost all t 6 [0,TI,

_ I
1Q H-IftrH-'%I- ,~C (3.4.10)

where I e L 2([O,T]), and, for almost all t e [0,T],

3(t) = zH-16 d [ 1 i"- 4 11 4 s (')dt j (3.4.11) 3

Proof: Problem (3.4.1) is nonsingular if and only if (3.4.2) is nonsingular, and (3.4.2) is I
nonsingular if and only if m satisfies (3.4.4). It follows from the proof of Theorem 3.3.4, that 3
m satisfies (3.4.4) if and only if s =m' satisfies (3.4.10). Equation (3.4.11) is simply a

restatement of (3.4.5) in terms of s. U I
Remark: As a practical consideration, the representation of the likelihood ratio given by

Equations (3.4.6) through (3.4.8) is probably rather difficult to implement. One would prefer

to use a matched filter implementation, if possible. This is easily done if s is sufficiently

well-behaved. For example, suppose I
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* TI s (t) = VH H(2H -1)fh (,) It--_TI2H -2dr.

where h is a continuous function on [OT]. It then follows immediately that the likelihood

I ratio is given by (3.4.6) with

(Y, M\()a = fh (r)dY(T), (3.4.12)
0

and

1 mn(y) = VHH(2H-1)ffh( h(a)I--I 2H-2dcda. (3.4.13)
* 00

Of course, in this case, even if Y is non-Gaussian (but with the same covariance function

KBT), the statistic (Y,mA(Y) given by (3.4.12) is the linear statistic with the highest signal-

to-noise ratio.

3.5. Detection of Gaussian Signals in FGN

Let X A (X(t); t e [0,T]) be a process observed on a compact interval [0,T]. In this

section, we consider the following hypothesis testing problem:I
versus Ho: X is Gaussian with mean zero and covariance function KB,,

versus (3.5.1)

I HI: X is Gaussian with mean function m 1 and continuous covariance
function KI.I

3 This problem can be regarded as a generalization of the problem of detecting Gaussian signals

in white Gaussian noise, which has been widely studied. We will see that the nonsingularityI
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conditions for the detection Problem (3.5.1) are closely related to the following well-known I
result of Shepp [58].

Theorem 3.5.1: Let X - (X(t); t e [0,T]) be a Gaussian process and let

Ko(t,s) = min(ts) for t,s e (0,T]. (Recall that K0 is the covariance function of a standard U
Brownian motion on [0,T].) Consider the following hypothesis testing problem:

Ho: X has mean zero and covariance function K0  1

versus (3.5.2) I
HI: X has mean function m I and continuous covariance function K .

This problem is nonsingular if and only if the following three conditions are satisfied.

(i) There exists a function 0 e L2 ([O,T] x [0,T]) such that
ts I I

(K I - K0)(ts) = Jf (,)dadt, V tj e [0,T].

(ii) If (I) represents the spectrum of the operator determined by the function #, then

-1 4 0((D).

(iii) There exists a function A e L2([O,T]) such that 1

Mi1(t ) -- Ph(r)dr, Vt e [0,T].
0 I

The function f) is unique and symmetric and is given by I
(t,s ) = ---- [(K1 - Ko)(ts)]

for almost all (ts) e [0,T] x [0,T]. The function A, is unique and -s given by U
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-dt

for almost all t e [0,T].

I

I Shepp also gives formulas for the likelihood ratio in the event that Problem (3.5.2) is

nonsingular. We will show that, if Problem (3.5.1) is nonsingular, it can be transformed into

an equivalent problem of the form (3.5.2), in which case, the likelihood ratio can be found

I using one of Shepp's formulas. We begin by giving a characterization of the RKHS

H(KB.,) 0 0H( K B.).

Theorem 3.5.2: Let the set of functions (ft; t e (0,T]) be defined by 1? 3.10). Then

H(KB,,T) ® H(K B,) consists of functions of the form

g(,s) = fSft(r)fs(a)g-'ra7,dad'r, ts e [0,T], (3.5.3)
* 00

where g E L 2([O,T] x [0,T]). Any such function g is twice differentiable almost everywhere

I in [0,T] x [0,T] and, for almost all (ts) e [0,T] x [0,T],

.]2, -12 , YI -,(tS) = -IS) l Sat H H( d
g1~s I tj-S '°.. -ffa*-no (t-)' (s-o) - -~ (tad dc

I (3.5.4)

Proof: Recall from the proof of Theorem 3.3.4 that the functions [f,; t e [0,T]) span

L 2([0,T]) and

K 3Br(t,s) = fft(u)fs(u)du, t r: [0,T].
0I

I ........ . . .--- - - ,m ,,,,m~ a nm u umm
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It follows that the set of functions (f (t ;s )e [O,T] x [0,T]) given by i
f (t.S)(T,(Y) 4 f, (,COfs (a), cLa e [0,T ],

spans L 2([O,T] x [0,T]), and

IT
KBHr(tPS )K3,r(24s2) =0f (I .tyM( f (S.,)( )d odr" Y ti's

i e [0,T].

Since

K((tj,t2 ),(s1 ,s 2)) = KBT(tl. s)KB.,(,(t2 .2), tis i c [0,T],

is the reproducing kernel for H(KB, ) 0@ H(KB.,T), it follows from Theorem 2.1.1 that a

function g e H(KB.ir) 0 H(KB,,) if and only if there exists a function

r L 2([O,T] x [0,T]) such that, for all ts e [0,T], I

g(ts) = ff (.r)('V,0)-FCadadc I
00

= ffft ()fs (a)? ta d ad '.
00

This proves (3.5.3). To establish (3.5.4), notice that, if g satisfies (3.5.3), then I

g (ts f ff , s (OfT(a)g ( Ydad -
00

(0 U ] [ H-%(U" )4dUj [A"HfvH- (v - ,G)Ht 2dv (T d adt I

_ 1 ]2 ful - *vH -  -'i tHa -)-(CY ()H- at d cdj dvdu.[F(H -16) 0ou If

It follows that, for almost all (ts) e [O,T] x [O,T], 3
I
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[2 ts
1 (:~ j n-JAsH- ffrT'I 4H &A- (t- ( )H-%(S .)ii- (T,d A d ".

a t (Os) = (H- 1 2)

Equation (3.5.4) follows straightforwardly by using the above formula. U

I We can now prove the following theorem, which is analogous to Shepp's result for sig-

3 nal detection in white Gaussian noise.

I TTheorem 3.5.3: Problem (3.5.1) is nonsingular if and only if the following three condi-

tions are satisfied.

I (i) There exists a function e L 2([O,T] x [0,T]) such that

(K1 - KB,,)(ts) = fft('Ofs(a)O(r,)dad-, " ts e [0,T]. (3.5.5)
00

The function 0 is real and symmetric, and, for almost all (ts) e [0,T ] x [0,T ),

=2

I2  a2  (3.5.6)

'ff'"'I-&" _(K I- K Bfr )d(t,a)d adt.
0as0at 0 ( (K

I (ii) If a(O) represents the spectrum of the operator 'D determined by the function ¢,

3 then a((D) c (-1,o).

(iii) There exists a function A I e L2([O,T]) such thatt ti
3m(t) f(H1A)J fUI-"_--- du fi(r)dr, 'V t e [0,r .

(3.5.7)

The function A I is real, and, for almost all t e [0,T],I
I
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A 1(t) = tl d (3h) J(t -- ) '-Hr' -H m' 1(t)d . (3.5.8)dt F( -H) I

Proof: It follows immediately from Theorem 2.1.4 that Problem (3.5.1) is nonsingular if

and only if

(i') (K1 - KBNr) r H (KBT,r) 0 H (KBm,r),

(ii') There exist constants 0 < c < C < - such that cKBHT < K 1 < CKB,rtT, and I

(iii') m, e H(Kn.,r). I

Clearly, by Theorem 3.5.2, condition (i) is equivalent to (i'), and it follows from Theorem

3.3.4 that condition (iii) is equivalent to (iii'). The theorem will be proven if we can show

that condition (ii) is equivalent to (ii'). To this end, let 0 be given by (3.5.6) and let the m

linear operator 4.L 2([0,T]) -4 L 2([0,T]) be defined by 3
T

('Dg)(t) = Jf4(t,,r)g (,)d?, t r: [0,T]3
0

where g e L2([0,T]). The operator (D is then compact and self-adjoint with 11(-11 1N112. m

Further, a(D) c [-I1(, 1I 1, and if X e a(O), then X = 0 or X is an eigenvalue of (D.

Finally, if (A, ) '=l is the set of eigenvalues of () and {en ),'* the associated set of orthonor-

mal eigenfunctions, then zero is the only accumulation point of {X,}"ij; (e,, )', spans I
L 2([0,T]); and 3

00~s) en (t "e7S, ts e [0,T],5

where the above convergence is in L 2([0,T] x [0,T]). (These standard properties of L 2  3
integral operators are discussed, for example, in [411.) We are now ready to show that (ii) and
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U (ii') are equivalent.

3 (ii') implies (ii): Suppose there exists c < 0 such that (K1 - cKBH,) is nonnegative

definite, and let X be an eigenvalue of (D with associated (unit) eigenfunction e. Since

tf; e e [0,T]) spans L2([0,T]), there exists a sequence of functions of the form

I N
fN(t) = ,ajft,(,), r e [0,T],i i=l

which converges to e in L 2(O,T]). Now, let 8 be the Dirac delta function and recall that

IT 77

KBHIT(- ) = ff, (,r)f, (,r)dc = fff, (T)fs (a)8(T-a)d cad .
* 0 00

Then,

. + (1-c) -ffe(a)e(o(ra) + (1-c )8(,r--a)]d ad?I 
00
-lim j aif(a)] Lajfti ()] [O(T,a) + (1-c)8(tr--c)]d adr

N
lim Y, aidj(K1 - cKn3,,)(ti,tj)
N" ) i.j=l

i >0,

3 and it follows that ?, Z: c-1 > -1. Hence, a(1)) Q (-1, 110111 and (ii') implies (ii).

(ii) implies (ii'): Now suppose that a(Y) c (-1, 11011 ]. Let the sets (aj }Ny and {. }N1

be arbitrary and define

3N gN(T) A- Yjaift,(,r), r e [0,T].
i i=I

Then

I
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Y, ai (K1 - cKnHT)(titj) = (aif t() ajf t(,) [ (-T,a) + (l-c )8(--a)]dod't
i,j=l 0"

ITI
= ffgN(a)g~ N()([O(,a) + (I-c)8(@-a)d ad r

R, + (1-0IINeI 2

_ [inf (X }I= + (1-c)] IlgNj 11

> 0 if c < I + inf{k)}'=. II
Since -1 cannot be an accumulation point of the set {X. ),=, we always have

inf { >~ } -1, and we can find 0 < c < 1 + inf {X, ) = such that (K1 - cKB,,,r) is nonne- I
gative definite. Similarly, 3

N IT

I aiaj(CK.,r - K)(ti,tj) = fgN(a)gN()[(C-1)8(r-(a) - 0(,a)]dadt 3
i'j=1 00

n=1

> [(C-1) - I1(111 ] IIgNI 12

>0 if C>I+ 11011I. I
Hence, we can find 0 < c < C < o* such that CKBir ,r- K1 < CKB ,. It follows that (ii)

implies (ii'), and the theorem is proved. m

We now wish to investigate the possibility of transforming Problem (3.5. 1) into the more I
familiar form (3.5.2) considered by Shepp.3

Theorem 3.5.4: If Problem (3.5.1) is nonsingular, the transformation

I
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Z ) J 1 - "f 4(_u)-Hu Idx(u), t e [0,T], (3.5.9)= I(3/2-//) 0 0

is well-defined under both hypotheses. The integral in (3.5.9) is to be interpreted as an

U integral with respect to the process Y A (Y(t); t e [0,T]} given by

t

Y(t) a .- t e [0,T]. (3.5.10)= F/2-H) o

The new observation process Z A- (Z(t); t e [0,T]) is Gaussian, and the transformed

hypothesis testing problem becomes

U HO: Z has mean zero and covariance function Ko(ts) = min(ts).

I versus (3.5.11)

HI: Z has mean function mz and covariance function Kz,

where

! mZ(t) = fnI(1e)d-' t e [0,T], (3.5.12)

t s 

0

Kz(t,s) = ffO(r,a)dcadr + min(ts), ts e [0,T], (3.5.13)
00

and 0 and A I are given by (3.5.6) and (3.5.8), respectively.

3Proof: It follows from Theorem (3.3.5) that, under H0 , the transformations defined by

(3.5.9) and (3.5.10) are well-defined, resulting in Z being a standard Brownian motion on

3 [0,T]. Further, since Problem (3.5.1) is assumed to be nonsingular, it follows that (3.5.9) and

3(3.5.10) are also well-defined under H, (see, for example, [7], lemma 2.4). So we need only

to establish that, under H, Z has a mean and covariance given by Equations (3.5.12) andI'
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(3.5.13), respectively. To this end, let Y be as defined as in (3.5.10) and notice that, under I
H1, Y has mean function 3

t t

my(t) = 1 f(t -- f)-H 1O-H m((()d' =fi "-H A I (r)dr, t e [0,T],
0 0

(3.5.14)

and covariance function

F]2 ts I1[ 1 00 'a( t 5) ' '  K' '  Is ' ) '  '  (,r, )d  a d c ts e [0,T IK y(t ,s ) = Fr(1..H) oo ~~ 0, I.

Clearly,

KI(t,s ) = (K1 - KB,,r)(ts) + KBlr(ts), I

and it follows from the proof of Theorem 3.3.5 that I

2 min(t 2 - 2  ) =I [.f/2_H ) ] (t-) ( s--a)' , aHK,, ,)d adz.

I
Thus, using these relationships and (3.5.6), we get straightforwardly that

Ky(t,s) = ff1-H ''/.H(r,a)dadc + 2-1H min(t2-2HIs2-2H), Se 6 [0,T].
00 (3.5.15)

Hence, we have established that, under H,, process Y has a mean and covariance given by 3
(3.5.14) and (3.5.15), respectively. Now, writing Z as

Z(:) = fHt-NY(r), t e [0,T],

and proceeding in a manner similar to the above, it follows straightforwardly that, under Hi

I
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I Z has a mean and covariance given by (3.5.12) and (3.5.13), respectively. This establishes

the theorem. U

We have shown that, if Problem (3.5.1) is nonsingular, (3.5.9) can be used to transform

Problem (3.5.1) causally into the form (3.5.2), which corresponds to the problem of detecting

a Gaussian signal in white Gaussian noise. Furthermore, since (3.5.9) is invertible under H0

(via (3.3.11)), the two problems are equivalent. Since Shepp has given formulas for the likeli-

hood ratio for Problem (3.5.2), we have a characterization for the optimal solution to Problem

I (3.5.1).

3 As a final consideration, we restrict our attention to a special case of Problem (3.5.1). In

particular, we assume that, under H, X is Gaussian with m1 = 0, and

*a e' - eiC-1K *,et,$) = T SI(co)dco, ' ts e [0,T], (3.5.16)

where S, is a spectral "density" satisfying

lim inf I )nIS1(O)) >0, (3.5.17)t IC)--I

and

fi (+€2) dco <c* (3.5.18)

for some integer n. The restriction that m, = 0 is not really necessary, merely convenient,

while conditions (3.5.16) through (3.5.18) simply imply that, under H 1, the observed process

I has stationary increments with well-behaved spectral densities. (See [77] and [781 for a dis-

3 cussion of processes with stationary increments.) These conditions are not very restrictive,

and when they hold, the observation process X can be defined as3
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X Q) ffi W(Ocdx A WV jo.t]) [0,T],

o I
where W is a generalized stationary Gaussian process.

If we let SW. be the spectral density of FGN, that is, m

S w, (c0) = 10)I 1 -2, O Co I?, I
then we can rewrite Problem (3.5.1) in the following equivalent form: 5

Ho: W has spectral density S wI

versus (3.5.19) 1
H : W has spectral density S1. m

With regard to this formulation, we have the following result

Proposition 3.5.5: If there exits 13 > 2H - such that

lim 1OI [SI(0)) - Sw((O)] =0, I

then (3.5.19) is nonsingular. If U
lim inf Io)12 'M -- [SI(m) - Sw,(o)] > 0, m

then (3.5.19) is singular. I
I

The proof of Proposition 3.5.5 is essentially due to Rozanov. For W a stationary L- 3
process with integrable spectral densities, the result is proven in [56]. The extension to the

case considered here follows easily from Lemmas 8 and 12 in [57].

I
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I For a wide class of covariance functions K1, this result gives simple nonsingularity con-

3 ditions for Problem (3.5.1). For example, if, under H1,

X(t) = BH'IT(t) + BH iT(t), t e [O,T],

where BHWIT A (BHIT(t); t E [0,T]) is another FBM independent of BH IT, then Problem

I (3.5.1) is nonsingular if and only if H' > H + /4. Heuristically, Proposition 3.5.5 implies that

a Gaussian signal produces a nonsingular shift in additive FGN when the signal's spectrum

has o(If 0- 2H) tails.

3.6. Performance Characteristics

In this section, we investigate some aspects of detector performance in the presence of

3 additive fractional Gaussian noise. In particular, we derive the signal-to-noise ratios of the

3 optimal detectors for a class of baseband signals. We also derive channel-mismatch degrada-

tion factors for two members of this class.

Consider the following normalized version of Problem (3.4.1):I o
HO: dy W) = a-- H IT W, t e [0,T,

I versus (3.6.1)

HI: dY(t) =s(t)dt + - d6H I(t), t e [0,T],I
where the normalizing factor a/1VH reflects the assumption that the noise has "power" G2

(i.e., Var(Y(l)} = a 2). It follows from Corollary 3.4.3 that Problem (3.6.1) will be nonsingu-

3 lar if and only if, for almost all t e [O,T],

I
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S H (3.6.2)
4V-Hr(H-/2) o

where 9 e L2([O,T]), and, for almost all t e [O,T],

t(t) = th- d (it - .. (3.6.3)ao132--) dt

Assuming nonsingularity, the log-likelihood ratio for (3.6.1) is then given by (cf. (3.4.6))

log L(Y) = (Y, m / r) n- / \m, M \  (3.6.4)

m,(y /- ,(Y)' 364

where

t

m (t) _ fs ( )d't, (3.6.5)

T

IM, mn [ (y)]2dt, (3.6.6)

and3

(Y, Mr)(y) = ')tt-d, T (t -') -H dY (r). (3.6.7)

It follows from (2.1.2) and (2.1.3) that log L(Y) is distributed in the following manner N
under the two hypotheses: 3

H°: log L(Y) - N P A \M , M,(y), \ , M \/ (Y)]

H: log L(Y) - N ( 92m, \Mn(y), (M, m/H(y)].

Assuming equal prior probabilities on H0 and H1, the minimum-probability-of-error detection I
I
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I rule takes the form (see [54])

5 {1 if log L(Y) > 0

if log L(Y) < 0

and the minimum probability of error is P, m /m'Y) ), where D is the standard

3 normal distribution function. Note that P,' is a decreasing function of \m, m /M(y), which

represents the signal-to-noise ratio (SNR) of the optimal detector for Problem (3.6.1).

Now, suppose that the signal s is of the form*
SWt) C4 ta, t e [0,T], (3.6.8)

Ta

where C is any real constant and oz Z 0. All of these signals have average power C2 and

i satisfy (3.6.2) with 3 given by

NO CNFVH (2a+I) tH- d _,)1.CAHS [d
(t a Tar(3/2_H) " H~oAt.- ) ,4H s (x)d j

I OTar(3/2-H) dt

C4VH(2aI) tH - d tc+2-2H f(_)A--HC+A-Hd r

a'r7(f/2-H) dt

(a+2-2H)N'VH (2cc+ 1) dr

=" Tar(3/-H) 0 d

I = C (a+2-2H )VVH (2a+)tAH .(3/2H)r(a+3/2-H)

aTar(3/2-.H) r(a+3-2H)

C r(c+t2-H )VIVH (2a-+ 1)

3 = aTa(a+2_2H)

I
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Hence, the SNR of the optimal detector is 3

Im, M) =3 2d

C 2VH(2a+l) [r(cC+-/2-H)]2 (3.6.9)

c2(2c+2-2H) [r(a+2-2H" 

For H = 2 expression (3.6.9) reduces to I

C2  IiM \ -j -T,

as one would expect, since H = 112 corresponds to white noise. In this case, the optimal SNR

grows linearly with respect to the length of the observation interval. However, for any H in 3
the range < H <1, (in, m)g grows sublinearly with respect to T. In fact, for H = 1,

the performance of the optimal detector is virtually independent of the length of the observa-

tion interval. This is in spite of the fact that the signal energy grows linearly with T and is in I
marked contrast to the asymptotically linear growth that one would expect if the noise process 3
had a rational spectrum.

It is interesting to note that a constant signal (a = 0) is essentially the only periodic sig-

nal that displays this behavior. More precisely, if s is a continuously differentiable periodic 3
signal, the optimal SNR will grow asymptotically at a linear rate for all H in the range

1/2 S H < 1. The proof of this fact is straightforward, although somewhat messy, and is omit-

ted.

For fixed T, the behavior of the optimal SNR, as a function of at and H, is pretty much 3
as one would expect, that is, increasing in both a and H. In fact, (3.6.9) implies that, for

fixed T, I

I
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U lim(m,m) 0oo, a 0,

H-AI

I and
Ilir m , \' I \ H > 1/2.

Qm4/if () -00,

3 The behavior when t = 0 is interesting. In this case, expression (3.6.9) reduces to

SC 2r(/2-H) T2-2H,Un, m/IF(y) 2r(H+/2)r(3_2H)

3 and, as H - 1, we get

| m 'C23 I, M11 5(y) -4 --

3 An optimal SNR equal to C 2/a2 corresponds to the case in which the sample paths of the

noise process are constant with probability one. In fact, if we were to extend the definition of

FGN (with power 02) to include the limiting case, H = 1, we would want just such a process

3 since

lim -! KWH(C)= lrm oa2H(2H-l)F 12-2 =2 9, VT e R.
H -I V11  H -I

U Hence, heuristically, FGN can be regarded as going from a completely unpredictable process

3 at H = 1/ to a completely predictable process at H = 1.

Now suppose that s is of the form (3.6.8) but that H is incorrectly identified; that is,

suppose that log L(Y) is computed using (3.6.3) - (3.6.7) on the basis of H' # H. Then

3 log L(Y) (which, in this case, is not the true log-likelihood ratio) is distributed as follows:

I
I
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HO, log L(Y) - N(-1/p, V2),

HI: log L(Y) - N( jig, v2),3

where (using (3.6.9))

=E~LF(/ f(t)H:dtf(t--)""-dY(C)

(3.6.10) 3
f[ J(,C)I2d~r

0

C2VH.(2a+1) rr(L+/2-H') ]2 322'
a2(2a+2-2H) Lr(ct+2-2HI)

and
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.r(3/2-H 10)

I a vr(a+3 /2-H I _2-a+ I T t"dHI t
qVITcr(a+2 2 Hjr(32 -H)~~d 0~ 0 1.l'~-H~I ~

I (3.6.11)
cvH, r(a+ % -H ')-2 c-a+ I T3=Var{ . [TOLf(t _T I-,11 &-1 dB H IT (C)

(X'- fr~1 [{: CHI-HdBH I T(t)]dj}0I
We consider two special cases.

Case 1: Constant Signal (a = 0)

If at = 0, expression (3.6.10) can be rewritten as

3 C2VH4p3C/z-H', 3/2_H')3 = a;2r(2-2H'

where ~3represents the beta function, and (3.6.11) reduces to

1 2 r ~ 1 H' (2H -1)JJTt)H( T~t)~) d td'U r (2-2H'1)0

= VH [2~; H (2H -1)T2 +H -H'e (HH'),

where
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11H, Ie (H ,H'') jf(l-) Ht'4'-H(.-u) uW/' HI I W 2-2d~ 1
00

Hence, the probability of error if a =0 and H' H is

- (3h-H', o/2-H) TI )
= .2a H (2H -1)e (HH) I I

Naturally, letting H' -H gives us the minimum probability of error, that is,
* (D1 m/i a () ) I
P= -(- Hm , 3/2-) T

.2oaH (2H1 - I )e (HH ) "

It follows that 3
e_-C e(3/2-H (, 3/2-H

3 ' I
2a"4H (2//-l)e (H ,-/)J
-Cp(3h / 2- H) 11-. H~ t 0(3/2-H', '/2-H ]

= 2rH (2H1 -I )e (H ,H e (HH ) (3/2-H, 3/2-H )
D[-V2 ,m (y e (H ') [(eI2-H, 3/2-H) 1

m\/Z (Y e(H -I' 3(H-, hH

Hence, the degradation factor S(HH,-'), which represents the loss in SNR due to channel

mismatch, is given by I

8(H,- e (H,H') 0(3/2-H, 3/2-H ]
I

The above derivation was carried out assuming that both H and H' were contained in

the interval ( ,1). However, it is straightforward to show that all of the above holds if I
I
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U H' = 1/2 and 1/ < H < 1; that is, if a nonwhite channel is assumed to be white. If the actual

channel is white, however, the expression for v2 takes a different form. It is easy to see that,

if H = 1A and /2 < H' < 1, we get

S
2  CVH' 2v ar2-H T3"4tH"f 1--c 1-21"Ic1-2H'dtc

" 3 Laf(2-2H)( )2 0'
3-L(2-CVH" T3 4H (2-2H', 2-2H).

In this case, the degradation factor is given by

5('12,H, )  [p(3/2-H', 3/2-H') ]
2

0(2-2H', 2-2H/

I 1We have evaluated these degradation factors numerically for various values of H and

H'. The results are presented in Table 3.6.1. As this table shows, if the channel is actually

Iwhite (H = 1h), the detector performance is very sensitive to mismatch. In fact, as H' - 1,

3we have 8(1/2,H') I- 0. On the other hand, Table 3.6.1 shows that, if the actual channel is

nonwhite (H > ), the detector performance is fairly insensitive to mismatch. In fact, if

IH = 1, there is virtually no loss in performance regardless of what value of H' is used to

3design the detector.

Clearly then, in the constant signal case, there is little to be gained, and potentially much

to be lost, by using a detector designed to match an assumed value of H > '/2. The robust

3strategy is to use a simple integrate-and-dump detector. This behavior is apparently related to

the fact that, when using constant signals on a channel for which H > /2, both the signal and

noise power are concentrated at the origin in the frequency domain. As we show below,1
I



I

62

I
I
I

Table 3.6.1. Degradation 8(H,H') Due to Mismatch (Constant Signal)

H 0.500 0.600 0.700 0.800 0.900 0.950 0.975 0.999

0.500 1.0000 0.9910 0.9528 0.8534 0.6140 0.3823 0.2160 0.0098 I
0.600 0.9950 1.0000 0.9962 0.9622 0.8716 0.7850 0.7247 0.6533

0.700 0.9864 0.9960 1.0000 0.9934 0.9645 0.9341 0.9124 0.8862 I
0.800 0.9815 0.9902 0.9970 1.0000 0.9950 0.9870 0.9809 0.9734

0.900 0.9847 0.9898 0.9946 0.9984 1.0000 0.9994 0.9986 0.9972 3
0.950 0.9906 0.9932 0.9960 0.9982 0.9998 1.0000 1.0000 0.9996

0.975 0.9948 0.9962 0.9976 0.9988 0.9998 1.0000 1.0000 1.0000 3
0.999 0.9998 0.9998 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 I

I

when using nonconstant signals, there is much more to be gained by properly identifying the

self-similarity parameter H. 3
Case 2: Ramp Signal (z = 1) 3

For a = 1, (3.6.10) and (3.6.11) become 3
-3c2VH, [i 2 T 2-2H'.,

= 2(4-2H,) [g(3 2H'

and 3
I
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V2 r 43CVH'125I-H 12 H2-)42-
LG= Tr(3-2H')r(fz--Hj)]H2-)~ 1 "

I r -2(0-0) + (1-r(1- )ld u

I/2H'~' /2-H ) 11

I [c~~~~~(r(3-2H 1)1X3/-H') JH~( H)

I where

e (HH') 'I~u12H-2

112-H' +( 3/2--H 12 ]d-rdi.

NProceeding as before, we find that, for 1/2 < H <l1and 12:5 H' < 1,

U(H' r(5/2-H 1(/2-H 1)(3-2H )(4-2H).. -e(HH)
8(HH)= 1( 5 /2--H )rX'f-H )r(3-2H 1)(4-2H 1 V e (H ,H

N Further, for H - 1/ and 1/2 :5 H' < 1, it ~S straightforward to show that

N 8('/,H) F(5/2-H 1)FQ/2-H) 3
r(3-2H')(4-2H') ( ,H')

U where

e e(1/2H') 4 P(2-2H', 2-2H 3 2 1(-H,22 (-H,22

II/2H (3/2-H 1)2 t '22
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Again, we have evaluated these degradation factors for several values of H and H'. The 3
results are presented in Table 3.6.2. As this table shows, detector performance continues to 3
be quite sensitive to channel mismatch when H = . However, with this signal structure,

detector performance is also quite sensitive to mismatch when H > 1, . This would seem to I
indicate that, for general nonconstant signals, significant performance improvements can be 3
expected due to proper identification of the parameter H. I

I
I
I

Table 3.6.2. Degradation 8(H,H') Due to Mismatch (Ramp Signal)

H H' 0.500 0.600 0.700 0.800 0.900 0.950 0.975 0.999 3
0.500 1.0000 0.9712 0.8505 0.5964 0.2615 0.1129 0.0514 0.0019 3
0.600 0.9783 1.0000 0.9600 0.7896 0.4791 0.3109 0.2357 0.1722

0.700 0.9084 0.9675 1.0000 0.9330 0.6745 0.4908 0.3996 0.3179 3
0.800 0.7691 0.8488 0.9415 1.0000 0.8701 0.6912 0.5845 0.4808

0.900 0.5081 0.5796 0.6901 0.8588 1.0000 0.9216 0.8188 0.6912 3
0.950 0.2980 0.3453 0.4272 0.5864 0.8906 1.0000 0.9561 0.8308

0.975 0.1623 0.1896 0.2392 0.3476 0.6498 0.9281 1.0000 0.9136 3
0.999 0.0071 0.0083 0.0107 0.0165 0.0419 0.1214 0.3341 1.0000 I

I
I
I
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1 3.7. Conclusion

3 In this chapter, we have considered the problem of detecting signals in the presence of

additive fractional Gaussian noise. We have applied results from the theory of reproducing

kernel Hilbert spaces to give necessary and sufficient conditions for the problem to be non-

3 singular and to develop whitening filters. For the case of a stationary stochastic signal, we

have interpreted these results in the frequency domain. In the case when the signal is deter-

ministic, we have characterized the optimal detector in terms of the likelihood ratio. Finally,

3 we have studied some aspects of detector performance on FGN channels.

* An interesting problem that we have not addressed in this context is that of sequence

detection in FGN. It is obvious that, in the presence of such strongly dependent noise, the

3 use of any one-shot strategy (optimal or not) to detect a sequence of signals will lead to a

3 sequence of strongly dependent detection errors. The study of this phenomenon and its conse-

quences is an interesting topic for further investigation.

U
I
U
I
U
I
U
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CHAPTER 4 3

AN RKHS APPROACH TO ROBUST DETECTION AND ESTIMATION 3
I

4.1. Introduction

In this chapter, we consider the problems of L 2 estimation and signal detection in the I
presence of uncertainty regarding the statistical structure of the random processes involved. 3
The classical approach to designing estimation and detection procedures relies upon exact

knowledge of this statistical structure, and procedures designed to be optimal for a particular

nominal structure sometimes perform very poorly if the actual statistical structure varies even 3
slightly from the nominal. The minimax approach to designing robust procedures that display

some amount of tolerance to variations in the actual statistical structure of the problem has

been studied in recent years by many authors. The work presented here is most closely 3
related to and motivated by the results presented in [52], [53], [66], and [70]. Other related

results can be found, for example, in [9], [10], [24], [39], [40], [65], [68], and [69].

We formulate and analyze the robust estimation and detection problems in the context of I
reproducing kernel Hilbert space theory. Although the relationship between classical 3
detection/estimation and RKHS theory is well-known (see, for example, [22], [23], and [48]),

this theory has not been applied previously to the study of robust estimation and detection.

By using an RKHS approach, we are able to generalize the notion of a linear filter and to give 3
necessary and sufficient conditions for such a filter to be robust in the minimax sense for the

general L2-estimation problem in which there is uncertainty in both the covariance structure of

the observed process X _ (X(t)) and the cross-covariance structure of X and Z, the variable 3
I
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U to be estimated. We show that, under mild regularity conditions, the robust filter can be

found by solving a related minimization problem. We also give conditions sufficient to insure

that the robust filter exists. In particular, we show that, if the covariance structure of the

I observed process is assumed to be known, so that the only uncertainty is in the cross-

I covariance structure of X and Z, then a robust filter will always exist and can be found by

solving a straightforward minimization problem.

A somewhat surprising consequence of this analysis is the striking similarity between

I these results for the general robust L2-estimation problem and results given by Poor in [531

3relating to robust matched filtering. Reformulating the robust matched filtering problem in an

RKHS context allows us to extend Poor's results and clearly reveals the underlying similarity

I between the robust estimation and matched filtering problems. In fact, the structures of

3 minimax solutions to the two problems are seen to be virtually identical.

As a final application of the RKHS approach to robustness, we consider the problem of

robust quadratic detection of a Gaussian signal in the presence of Gaussian noise, in which

3 the deflection ratio is used as a performance criterion. We show that this problem also can be

formulated in an RKHS context, and, when the structure of the noise covariance is assumed to

be known, is exactly analogous to the robust matched filtering problem. If the covariance

I structure of the noise is also unknown, the robust quadratic detection problem can be embed-

3 ded in a larger problem, which is again analogous to the robust matched filtering problem. A

robust filter for this larger problem will then possess desirable robustness properties when

I applied to the quadratic detection problem.

3 This chapter is organized as follows. In Section 4.2, we present some definitions and

notation that will be used throughout the chapter. In Section 4.3, we discuss the general



I

robust L2-estimation problem, and in Section 4.4 the robust matched filtering problem. I
Robust quadratic detection is discussed in Section 4.5. Section 4.6 presents some concluding

remarks. I
4.2. Preliminaries

Throughout this chapter, X _ (X (t); t e 1) will represent an observed process defined 3
on an arbitrary index set I. All random variables will be assumed real-valued with mean zero

and finite variance unless otherwise specified. The extension of all results to the case of

complex-valued random variables is straightforward.

Suppose that K is a class of covariance functions defined on an index set I. We define !

S(K) as the set of all functions belonging to 0 (K) for some K e K; that is, 3
M (K) = uK H(K)3

Note that M(K) is generally not an RKHS, nor is it necessarily closed under addition. How-

ever, if K is a convex set of covariance functions, then M(K) is convex. This foilows from

the fact that if s0 e 0(K 0 ) and s 1 e 0(K 1), then (1--c)s 0 + as1 e H((I1-a)K0 + (xK 1) (see 3
[1], §1.6). 3

We define a finite filter on K as a pair i=( ,, ( , where n is a positive

integer, (hi}i=l cR, and {ti)inl, cI. For each K e K, the function hK e H(K) is

defined by 3
fiK(') -_ YhiK(.,ti).

i=1

Similarly, we define a filter on K as a sequence h = {hN }'= of finite filters such that, for 3
3
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U every K e K, the sequence (hNK);l c H(K) converges in H (K). For each K 6 1K, the

3 function hK e H (K) is then defined as

hK( lniNK()= lr hi(N)K(.,ti(N)),
N-." N-.- i=

3 where the limit is taken in H (K) (and consequently pointwise, as well). In order to simplify

I notation somewhat, we will regard k.=. {ri(N)}fN) as a single sequence {ri )?*I and write

hK(= -rn i.hi(N)K(.,ti),

where it is understood that, for each N, the sequence [hi(N))j* 1 has only finitely many

nonzero elements corresponding to the appropriate values of the sequence (ti }=.

For any class 1K of covariance functions on I, we denote by F(JK) the class of all filters

I on 1K, and we note that the class of finite filters can be regarded as a subset of F (K). To

3 denote the set of filters defined on the singleton class 1K = (K), we simply write F (K); thus,

F(K) = o F(K). For any h e F(K), we can define a function (., h)" H(K) -*IR in the3 KeK

following manner. Let K e 1K and s e H (K). Then

I ,, hN , hK,/ (K)

ISr lim hNK ,(K)N--
rn \s ,hN K I (K)

Is r s, jh i (N)K(.,tf), (K)
N-"- i=1

I =lim ijh(N)s( i ).
N-- i=I

U It is clear that , hi is well-defined on H(K) for any h E F(K). Further, for any h e F(IK)

U
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and K e K, the restriction of" h to H (K) defines a bounded linear functional on H (K). I
Also, for any K e K, we have 3

(hK, h , hK \/j (K)3

imT \hNK, hNkTR(K)
h,' - m,

NJir hi(N)hj(N)K(tjti). I

If the process X has covariance function Kx e K, then, for each h e /F(/K), we can I
define h(X) c L2(X) as 3

h(X) =ir hN(X)
N -

(4.2.1)
lir hi (N)X (t),

where the limit is taken in the mean-square sense. The fact that this limit is well-defined fol-

lows from the congruence between H(Kx) and L2(X); that is, U
Jim E([hN(X) - hM(X)] 2) im IIhNKX - hMKX2 I

N.M--- NMf---o

-0.

Note that (4.2.1) implies that h(X) = / hKX, IR(Kx). 3
Finally, the term signal will usually refer to a funcdon s: I -+ F, and uncertainty class

will always mean a set of signal-covariance pairs (sK). The term admissible uncertainty I
class refers to an uncertainty class U with the following additional properties: 3

(i) for all pairs (sK), s e H (K), and

(ii) U is convex; that is, if (so,Ko) e U and (s1 ,K 1) r U, then

((1-az)s 0 + ars 1, (1-a)K0 + aK/1 ) e U for all 0 a !S. I
I
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I Given any uncertainty class U, we associate with it the class K (U) of covariance functions

3 "contained in" U; that is,

JK(U) {K: (sK) cU for some signal s}.

I We are now ready to discuss the problem of robust L 2 estimation.

I 4.3. Robust L2 Estimation

Let X A (X(t); t e I) be an observed zero-mean process with covariance function KX,

and let Z be an arbitrary zero-mean, L 2 random variable. If Z(X) is the projection of Z onto

I L 2(X), then we know that

3 E([Z-Z(X)]2 1= min E([Z-U3 21. (4.3.1)

U eL2 X)

3 That is, 2 (X) e L 2(X) is the linear estimate of Z that minimizes the mean squared error

3 (MSE). Of course, Z(X) is also the unique element of L 2(X) that satisfies the equation

E(X(t)Z) = E(X(t)Z(X)), V te 1. (4.3.2)

We can restate these relationships in RKHS terms by defining sz: I -- B? as

I Sz(t) A E(X(t)Z}, V t e1.

It then follows from Equations (2.1.1) and (4.3.2) that sz e MI(Kx) and \X S ( X).

3 Hence, if Kx and sz are known, the linear estimate 2(X) e L 2 (X) satisfying (4.3.1) can be

determined as follows. Since sz e H(Kx), there exists a filter h E IF(Kx) satisfying

sz = hKx; that is, for all t e 1,

U
U
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sz(t) = hKx(t) 3
= lim hNgx(t)

N-4- (4.3.3)

= lim ihi(N)Kx(t,ti).
N-"- i=1 

I

It follows that = (X) = ZX,NSz"I (Kx) is given by

(X) = h(X)

= um i h i (N)X ( ti ).
N-)oi=1I

Of course, Equation (4.3.3) is just a generalization of the well-known Wiener-Hopf equation. 3
The foregoing discussion is a restatement of classical L2 -estimation results in RKHS 3

terms, but now consider the problem in which there is uncertainty in the structure of Kx or

sz. In particular, suppose we know only that the pair (szKx) belongs to some admissible I
uncertainty class U. Recall that, for any pair (sK) r U, we require that s e H (K). Since

we have already seen that, in general, we must have sz e H (Kx), this restriction on the

structure of U is quite natural for this problem. Now, since Kx and sz are no longer

assumed to be known precisely, we cannot expect to find the estimate 2(X) e L(X) that 3
solves (4.3.1). Instead, we look for a filter hR e F (K(U)) that satisfies 3

sUp M(hR; (s,K)) inf sup M(h; (sK)), (4.3.4)

(s, )E U he F (K(U)) (s K)e U3

where M(h; (s ,K)) is the MSE associated with estimating Z by h(X) if Kx = K and sz = s;

that is,

I
I
I
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I M(h; (sK)) _ E([Z - h(X)]2)

=E([[Z - limj i h i (N)X(t i )]2 )

I i=1

* tN

= - 2 (s, h) + (hK, h)."

Notice that we are implicitly assuming that al E{Z 2) does not depend on the actual struc-

ture of Kx or sz - it is assumed fixed but not necessarily known. This is usually a reasonable

U requirement on the structure of the uncertainty in the problem (see [52] and [66] for some

examples), and, in any case, it is equivalent to solving a "normalized" problem in which the

performance criterion is MSE/0 2 , and U consists of pairs (s ,K) corresponding to the possible

I values of (szlo, Kx/o2).

3 A filter hR e F(1K(U)) satisfying (4.3.4) is called a robust filter for the game

(F (1K (U )),U ,M). In order to find a robust filter, we search for a saddle point for

(F (K (U)),U ,M), which is defined to be a pair (hR; (SL,KtL)) e F (K(U)) x U that satisfies

I M(hR; (sK)) < M(hR; (SL,K)) < M(h; (SL,K)) V h e F(IK(U)), (s,K) e U.

I (4.3.5)

If (hR; (SL,KO)) satisfies (4.3.5), then it is easy to see that (see [4], §2.3.1)

I inf sup M(h; (s,K)) = sup inf M(h; (sK)) = M(hR; (SL,KL)).

heF(K(U)) (sK)eU (sK)e U heF(K(M))

In particular, hR satisfies (4.3.4). If we define

I
U
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M*(sK) inf M(h; (sK)), I
hEFQKC(U))

then (4.3.5) clearly implies that I
M * (S LXKL) =M (hR; (S LXK0))2!M *(sX,), "~(sK)e U1;

that is, (SLKL) is least favorable for (F (1K (U )),. ,M). We consider some of the properties

of M and M*.

Lemma 4.3.1: M is concave on U for fixed h e F(K(U)).

Proof: Let (siKj) e U for i = 0, 1 and (s (xKc, = ((1-cc)s 0 + as 1, (1 -a)K 0 + aK 1) for3

0 :5a :1. Then, for fixed he F(K (U)),3

=; 2 - 2 (lim /hi(N)sa(ti)] + lir hi(N)hj (N)KOjhi)

aZ - 2 (lm jhA(N)sO(tj)] + lir hi (N)h(N)Ko(tjti)

N N-- )go

+=a(1 Z2- 2 (ir hi(N)So(ti) + lir hi(N)hj(N)Ko(tj,ti)]
[N1--* i=1 N-'- ijm

(1a)[u2 2\O' , \ 0'1hO

+ a u - 2 s, h\)/ ( hKa, hj

= (I-a)M(h; (s0,Ko)) + c.M(h; (sI,K1)). U I

Lemma 4.3.2: M *is concave on U.

Proof: Let (saKc) be as before. ThenI

I
I
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M M(s,Ka) = inf M(h; (,,K)
he F(K(IJ ,

> inf ((1-c)M (h; (soKo)) + aM (h; (s lk 1))]IheF(K(U)) (
> (-a) inf M(h; so ) + [x(, inf M (h;(sI1)

(1- heF(K(U)) 0 ] heF(K(U))

=(1--a)M*(sK 0 ) + caM1(s1 ,K1 ). U

Lemma 4.3.3: For any (s0 ,K0 ) e U,

I M * ~(s 1K0) = O s0 S 1 (K o)*

I Further, for any h e F (JK(U)), we have

M (h; (s0 ,K0 )) =M* (s0,K0 )

if and only if hK 0 = so.

Proof: Since s e H (KO), there exists ho e IF(K 0)) such that h0K 0 = s 0. For any

h e F (K (U)) cF (K 0 ), we have

M (h; (s 0 ,K0 )) = aZ2 - 2 \Is, h\/+ \1hK, h

= 2-a '2 h0 K 0 , h)'+ \hK , h)1

a2 - aIOOh K) +\hK0 , hKo)( 0

= + '(h-h 0 )K0 , (h-ho)K~( 0 - h0K0, h0K0 u()

=aZ2 + \/(h-h 0 )K0 , (h-h0 )K0 \ (KO) - \15 s01g (K0)-

I Hence,

M(JM (S OXK0)) a! - \S 0, S O\IN(KO),

with equality if and only if hK0 = h0K0  so. Further, since ho e IF(K0 ), there exists a

sequence {hi 0 " I c JF(IK(U )) of finite filters such that
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lim hKo = hoKo = so, I

N--

and it follows that I

lim M(h°; (so,Ko)) = -2 li 2 So, h/v + lim (hK o, ho\
NN N--

=2  - 2 /So, hjNKo (K + lir \h K 0 , hJKo/H(Ko
\~ 2/j (KO). NJ NN-4-K

= - 2 \s 0, s 0B (Ko) + (so, sO\I-A soI (K o)

= / I(Ko
).

This proves the lemma. U

We can now give necessary and sufficient conditions for a pair (hR; (s L,KL,)) to be a sad-

dle point for (F(K(U)),UM). These conditions are very reminiscent of those given by

Poor in [53], Lemma 1, relating to saddle point solutions for the robust matched filtering I

problem. The similarities between these two problems will be explored more fully in the next 3
section.

Theorem 4.3.4: (hR; (SLKL)) e F(K(U)) x U is a saddle point for (F(K(U)),UM) I

if and only if hRKL = SL, and 3
s,hR\ -SL, hR\ -(hRK, hR ) -0, Y' (s ,K) U. (4.3.6)

Proof: Recall that (hR; (SL,KL)) is a saddle point for (F (K (U)),U,M) if and only if 3
M(hR; (SLKt)) < M(h; (sL,KU), V h e F(K(U)), (4.3.7)

and

M(hR; (sK)) < M(hR; (SL,K)), Y (sK) E U. (4.3.8)

It follows immediately from Lemma 4.3.3 that (4.3.7) is satisfied if and only if hRKL = so 1
1
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m the theorem will be proven if we can establish that, given hRKL = S L, (4.3.8) holds if and

only if (4.3.6) holds. To this end, notice that, since M is concave on U for fixed

h e F( (U)), (4.3.8) holds if and only if, for each (sK) e U,

Urn I- (M(hR; (s.,K.)) - M(hR; (SLKL))] _< 0,

where (sa,Ka) = ((l-a)sL + as, (1-a)KL + ax). But if hRKL = SL, then

S 1 Ss J, h- 'hRK L,

I and, by Lemma 4.3.3,

M (hR; (S LXK0 ) = Z2 - \S U L, / (KO .-

3 Therefore,

lim I M (hR; (soKc)) - M(hR; (SLKO)) lira - (-2ox \s, hR -2(1--()sL, hR\

+ hRK,, hR\/+ \hRK L, hR)

2a \sh 2(1 -a) \S
m o/hRK' h\ (2--a)/ h

hR/+ \hRKL, hRi

I _=-2 \1s, hR\/+ \SL, hR~t+ \hRK, hR\/*

Hence, if hRKL = sL, then (4.3.8) holds if and only if (4.3.6) holds, and the theorem fol-

lows. m

m Theorem 4.3.4 gives a complete characterization of saddle point solutions for

(F(K(J)),U,M). The next theorem and its corollary give conditions under which the

existence of a saddle point is equivalent to the existence of a least favorable pair (S L,K L)I
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maximizing M* on U. Since M* is concave on U, the search for a least favorable pair I
often reduces to a straightforward convex programming problem. The proof of Theorem 4.3.5

is given in Appendix B.

Theorem 4.3.5: Let (SL,KL) e U and let hR e F(KL) satisfy hRKL = SL. Suppose that

KL dominates JK(U); that is, for all K e JK(U), there exists C > 0 (depending on K) such 3
that K -c CKL (i.e., (CKL - K) is nonnegative definite on I). Then hR e IF(1K(U)) and the g
condition

s u I. ( ssN(K), V (sK) e U, (4.3.9)

holds if and only if (4.3.6) holds; that is, if and only if I

2\s, hR\,-\SL, R\-hRK, hR> 0, V (sK) e U.

Corollary 4.3.6: Suppose that (SL,KL) is a least favorable pair for (F (1K (U )),U ,M) and

that KL dominates JK(U). Let hR e F(KL) be such that hRKL = SL. Then (hR; (SL,KL)) is

a saddle point for (F (IK ()),U ,M).

Proof: If (SL,KL) is a least favorable pair, then I
Istu, g <  Y (sK) r: 1.

L41 S (K) \S ,N ()A) (U K),

Since KL dominates K(U), it follows from Theorem 4.3.5 that hR e F (JK(U )) and 3
s ,hR-SL, hR\ - \hRK, hRI \ 0, Y(sK) e U.

The result follows by applying Theorem 4.3.4. U

Remark 4.3.7: Suppose that the index set I is itself a Hilbert space Mo. Then the

covariance functions K e K(U) all correspond to bounded linear operators on H0 , and a 3
1
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I sufficient condition for KL to dominate K (U) is that the operator KL be invertible. To see

this, let K c IK(U) with corresponding operator K and f e H0 . Then

I f' ~~V(CKL- K)Y'1= O= Vf ' K A( CI - K-"KK-4V)KL/1Yx, \

KLf ,(CI - KL KK -)KLf u
|~~ L jH0/i,

"CIIK 1 f II. - \ , (K K AK )L )KLJf 0

> flK"f IIko [ C - IIKE AKKEl L/1].

I Clearly, if C is chosen to satisfy C Z IIKC KK/I I, then the operator (C KL - K) is positive

IandK - CK L.

It follows that, if (S LKL) is a least favorable pair for (F (K (U)),U ,M) and the operator

KL is invertible, the pair (KE'SL; (sL,K)) is a saddle point for (F(IK(U)),UM). Note that,

I in this case, the filter hR consists of a single element hR = KLjSL 6 Mo. The corresponding

5 random variable is hR(X) = X(h R).

Il
3 In the case when the covariance structure of the process X is assumed to be known, so

that the only uncertainty is in the structure of the "signal" sz, the existence of a robust filter is

guaranteed, as the following corollary shows.

I Corollary 4.3.8: Suppose U has the form

3 U = ((sK 0): s e S c H(K0), S convex)

5 for some fixed covariance function K0. Then there exists a robust filter hR for the game

(F(Ko),UM). Further, hR satisfies hRKO = SL, where SL is the unique element of S (the

closure of S in H (K0)) with minimum norm; that is,

I
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ISLS V (K) (sS, \1 I (4.3.10)

LI /AF (Kc, S L 6 S

Proof: Let " = {(s,Ko): s e S). Since T is a closed, convex subset of lH(Ko), there I
exists a unique element SL 6 T satisfying (4.3.10) (see [31], §3.12). Since SL 6 /i(K 0), we

can find hR satisfying hRKO = SL, and, by Corollary 4.3.6, (hR; (sL,Ko)) is a saddle point for

(F (KO)UM). Since M (sK) = - s, (K,) is a continuous function on S. it follows

that 5
suX M"(s'K°) = sup M(s,Ko).
(s u (S XO)G I

Hence, following [70], §II.D, we have 3
M(hR; (s LKO)) = sup M(hR; (s,K 0 ))

;> SK 0 M(hR; (s,Ko))

> inf sup M(h; (sK 0 ))
he F(Ko) (s .Ko)e M s

u(e U inf(Ko) M(h; (s,Ko))

" sup M (s,K0 )

sup M*(sK )

= sup inf M(h; (s,Ko)) I
(s,Ko)e " he F (Ko)

= M(hR; (SLKO))"

It follows that all of the inequalities above can be replaced with equalities, and we get 3
Su M(hR; (s,Ko)) = inf su I

so that hR is a robust filter for (F (Ko),U,M). U

I
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I If the covariance structure of X is not precisely known, considerably more structure is

needed to guarantee the existence of a robust filter. The following corollnry gives one set of

conditions sufficient to guarantee the existence of a saddle point for (F (1K (U )),UM).I
Corollary 4.3.9: Suppose that I is a Hilbert space H, and let us regard K(U) as a set

5 of bounded, linear, self-adjoint, positive operators on H o. Suppose further that

5 K(U) c HS(Ho), the Hilbert space of Hilbert-Schmidt operators on M0 with the Hilbert-

Schmidt norm IIlHs(No,) We can then regard U as a subset of M0 x HS(H 0 ), which becomes

I a Hilbert space under the norm

5 I1(',*)112 " Il"11u, + II*HS(No).

if

(i) for every KoK 1 e 1K(U) there exist constants 0 < c < C < * (depending on K0

and K 1) such that c Ko c K1 c C Ko (i.e., the operators (C Ko - K1 ) and

I (K1 - c Ko) are both positive), and

5 (ii) U is a closed, bounded subset of H 0 x HS(H 0 ),

then there exists a saddle point for (F (K (U)),UM).

Proof: For the case under consideration (I = M0 ), it is easy to see that a finite filter

I corresponds to a function h e M0 , and, for any (s,K) e U,

U~\ Ks, f,=(A

and

I
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M(h; (s,K))-=2- 2 s', Kh .

Clearly, for fixed hi, the function M (i; (', *)) can be extended to a continuous, concave I
function on all of Ho x HS(H 0 ). By considering the proof of Lemma 4.3.3, it is easy to see

that, for all (s,K) e U,

M * (s,K) _ inf M (h; (s,K))

heF(K(U))

= inf M(h; (s,K)). jfiF(ig(V))

Hence, M* also can be extended to all of H 0 x HS(0) as the infimum of a class of continu- 3
ous, concave functions. It follows that M* (so extended) is concave (see the proof of Lemma

4.3.2) and upper semicontinuous (see [15], Proposition 7.11). By hypothesis (ii), U is a

closed, bounded, convex subset of the Hilbert space H 0 x HS(H 0 ), and it follows from [41, 1
Theorem 2.1.2, that there exists (SL,KL) e U such that I

M* (sL,KU)= sup M*(s,K);(,K)e 0 I

that is, (sL,KL) is at least favorable pair for (F(K (U)),UM). By hypothesis (i), KL dom-

inates 1K (U), and it follows from Corollary 4.3.6 that (hR; (SL,KL)) is a saddle point for

(F (K (U)),U,M) for any hR e F(K (U)) satisfying hRKL = SL. N I

We end this section with an example illustrating the material discussed above. 3
Example 4.3.10: Let I = L 2([a,b]), the space of square-integrable, real-valued functions

on the interval [a ,bi, where -o < a < b <a a. Let k0 be a known, real-valued, continuous

covariance function on [a,b I and let K0 be the operator on L2([a,b 1) generated by ko; that is, 3

I
I I I



I
I 83

38
C (') =ff (,t)ko(.,,C)d It, V f e L 2([a,b ]).

, a

Assume that K0 is strictly positive. It follows (see, for example, [41], §6.10) that K0 is a

3 compact operator on L2 ([a,b]), and, if we let (e, } '=! be the set of orthonormal eigenfunc-

3 tions of K0 with associated (positive) eigenvalues %I 2 t, then {e, }" spans

L 2([a,b]). If we regard H(Ko) as a subset of L 2([a,b)), then it follows (see [48), §9) that a

functions e L 2([a,b]) is a member of H(K o) if and only if

I llsll46o) = n=__1 Xn - (4.3.11)

where

3b
s,= )e, (¢)dc.

Now, suppose that aZ > 0, so e H(KO), and e > 0 are given such that 1s s,.. IKo) <

and e < j (s.°) 2, where
3 n=1

b

s=, Js o(t)e,,(t)dtr.
n ta

3 Define the set S c/(K 0 ) by

I
I
I
I
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s (KO): 11SII(c 11 2, and ftS (,C) _- o(r)]2 dt: C

1 (4.3.12)

s - L2([a ,b ): i .2 < 4, and i (s,, _ s4. 2 3.1

We seek a saddle point for the game (F (KO),U,M), where U = S x (Ko). We proceed by

searching for the least favorable signal; that is, the signal S L e S that satisfies

IsU Fcc.0 = inf 1IS12K). (4.3.13) 1
$e5

SES

It follows from (4.3.11) and (4.3.12) that solving (4.3.13) is equivalent to minimizing 2:-
R=1 Xf

subject to the constraint y(Sn - s,,0)2 e e. A straightforward Lagrange multiplier calculation

yields the candidate SL e L 2([a ,b ]) defined by

s L~- Zs-,Le f e, (4.3.14)
n=1 n

where a > 0 is the unique positive solution to

(S O - sIL)2  :. (4.3.15) 1

Notice that (4.3.14) and (4.3.15) imply that 3
( n)2 LtLfC . = a2e <o,, (4.3.16)

so that SL 1,(K ). 3
I
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I To show that sL is indeed the least favorable signal, we use the fact that sL satisfies

3 (4.3.13) if and only if (see [31], §3.12, or apply Theorem 4.3.5)

IS - SL, S \ (K,) > O, s r S.

It follows from (4.3.11), (4.3.14), and (4.3.15) that

IS - SL, S\ (K,) =IS - SO, st J(K,) ;,SO -S, SL\/(Ko)

I ,o O' no]
\S -so, S )+ ( E.a -

\';s - So 0's LAF (Ko) +  .

Further, it follows from (4.3.11), (4.3.12), (4.3.16), and the Schwarz inequality that, for all

3 S ES,

\' (s SO , ,,, = I \- - - -Sn n

ni=1 X

3(S -G.in Sn 2]1A [j LI]

i €.

IHence,

/s S Lt, S LA(K.) >-0, V S e S,

I and it follows that SL. is the least favorable signal.

Now, define h R c- L([a,b]) by
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..sL

hR= i'#"en. (4.3.17)
n=1 )In3

Then,

L~n
KOhR Iz~Kel = sLen = SL

and it follows from Corollary 4.3.6 that (hR; (SL,KO)) is a saddle point for (iF (K0),U ,M).

Note that, here again, the filter hR consists of a single element h R. The corresponding ran-

dom variable is 3
b

hR(X) = X(hR) = JhR('C)X (,)d .

a

We now turn to the problem of robust matched filtering. As we shall see, the structure

of this problem is essentially the same as that of robust L 2 estimation. 3
4.4. Robust Matched Filtering 3

Let X A- (X(t); t e I) be an observed process. Consider the following simple 3
hypothesis testing problem:

I
H0: X has mean zero and covariance function Kx ,

versus (4.4.1)

H1 : X has mean function m and covariance function Kx, 3

where Kx is a known covariance function and 0 * m e H(Kx) is a known deterministic sig- I

nal. This corresponds, of course, to the problem of detecting the signal m in the presence of 3
additive, zero-mean noise with covariance function Kx. The conditior m r H(Kx)
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guarantees that Problem (4.4.1) is well-behaved and, when X is Gaussian, is related to the

nonsingularity of (4.4.1), as discussed in Chapter 2. We shall have more to say about this

condition at a later time.

Problem (4.4.1) is usually decided by using a linear detector, that is, a detector in which

3 the test statistic h(X) is of the form

Ih(X) = lim i. h i (N )X ( t ) '

3 where, for each N, the sequence [hi(N))} 1 c IR has only finitely many nonzero elements,

and convergence is the mean-square sense under both hypotheses. Clearly, given any such

statistic, there is a corresponding filter h E F(Kx). Furthermore, since m e H (Kx), it is

3 easy to see that, given any h E F (Kx), the corresponding statistic h(X) is well-defined under

3 both hypotheses.

The signal-to-noise ratio (SNR) for Problem (4.4.1) corresponding to the filter

h e F(Kx) with associated test statistic h(X) is given by1

3

I

I

! 0
tHere and elsewhere, the quantity - is defined to be 0.I

. t ilil~~li iii I I0
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A(h; (mKx)) A [Elh(X))2 n

Var (h(X)]
li hi (Nlm(ti)

lira ijhi(N)hj(N)K x(tj,ti )
N.- .

(4.4.2) 1
.Kx, h, 1

1hKx, hKX/),Kx)U

A matched filter for Problem (4.4.1) is any filter h * e F(Kx) that satisfies I

A(hsu(mKx))= sup A(h; (m,Kx)). (4.4.3) 3
It follows immediately from (4.4.2) and the Schwarz inequality that h* satisfies (4.4.3) if and 3
only if h*Kx = cm, for some constant c * 0, and the maximum SNR for Problem (4.4.1) is

given by

A(h*; (m,Kx)) = 11M i2 (Kx).

Now, suppose that the pair (m ,Kx) is known only to belong to some admissible uncer- I
tainty class U; that is, we now consider the composite hypothesis testing problem: 3

I
I
1
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1 H: X has mean zero and covariance function K,

3 versus (4.4.4)

HI: X has mean function s and covariance function K,

where (sK) e U.2 In order to decide Problem (4.4.4), we are interested in using a linear

detector incorporating a test statistic hR(X) corresponding to a filter hR e F (K (U)) that

satisfies

3 inf A(hR; (sK)) = sup inf A(h; (sK)). (4.4.5)
(sK)Ea hUF (sk)e U

3 We will refer to a filter satisfying (4.4.5) as a robust matched filter for the game

(F (K (U )),U A). In order to find a robust matched filter, we again search for a saddle point

(hR; (SL,KL)) e F(QK(U)) x U satisfying

A(h; (SL,K)) : A(h; (sLK)) f. A(hR; (s,K)), 10 h e IF(lK(U)), (s,K) r U.

1 (4.4.6)

If we define

I A* (sK) _ sip A(h; (sK)),he F( U))

1 then, as before, (4.4.6) implies

3 A*(SLX L)5 A* (S ), V (sK) r U,

3 so that (SL,K L) is least favorable for (F(K(U)),UA). We have the following properties for

A and A*.

I a
I 2We assume throughout this section that, for any pair (s ,K) E U, s = 0.

I
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Lemma 4.4.1: A is convex on U for fixed h E F(K(U)). I

Proof: Let (sii) e U for i = 0, 1, and define (s,Kc) in the usual manner for 3
0 < a :a 1. If hKi , h) = 0 for i = 0 or i = 1, then it is easy to see that

A(h; (saKa)) = (1--)A(h; (soKo)) + aA(h; (s jX 1)).

If, hKi , hx > 0 for i = 0 and i = 1, then, letting

cy, hK1 h
= 'hK, h7 '

we have E [0,1] and

A(h; (sa,KO)) =,hKh 1-b ) hKo, h/ + hK 1 h I

(~ [(1 0, h/ \ 2 s, 2 I
h" h'21

5<\hKa, h 1 -0)L 0 'So +3 , ,

= (1--a)A(h; (soo)) + aA(h; (s1 ,K1 ). I
This proves the lemma. N

Lemma 4.4.2: A* is convex on U.

Proof: See proof of Lemmna 4.3.2.1

Lemma 4.4.3: For any (s0,K0) r= U,3

A (s0,K0) = \S sOlI(Ko)"

Further, for any h e F K(U)), we have

A(h; (s4oKo)) = A' (so,Ko)

if and only if hK o = Cso for some c *0. II
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I Proof: By the Schwarz inequality, we have

o, hKoN (Ko)2

A(h; (s 0oo)) = 'hKo, K\
01No (K0)

:5($ 0, O/N (Ko)'

i with equality if and only if hK o  Cso, c # 0. Further, since So C H(K 0 ), there exists a

sequence ({ o } =I of finite filters such that

I lim h o = so,N-

I and it follows that

I S, ioK \  2

lm A(h°N; (so,Ko)) = 1ir \s0 iN O/H(Ko)J

\--N , hN oI(Ko)

= so' S OIN(Ko)"

This proves the lemma. M

The following theorem gives necessary and sufficient conditions for a pair (hR; (SLKL))

to be a saddle point for (F(IK(U)),UA). It should be noted that, except for the addition of

3 a scale factor on the robust filter hR, these conditions are identical to those given in Theorem

4.3.4 for the robust L2-estimation problem.

Theorem 4.4.4: (hR; (SL,KL)) e F(K(U)) x U is a saddle point for (F(/K(U)),U,A)

I if and only if hRKL = CSL for some c * 0, and

2 hs, nR/- SL, hR)- hRK, hR O, Y (sK) U, (4.4.7)

I
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where h'R = -h R. I
C

Proof: It follows from (4.4.6) that (hR; (SL,K )) is a saddle point for (F (K (U)),UA) if I
and only if

A(h; (SL,KL) < A(hR; (SLKI)), V' h e F (K(U)), (4.4.8)

and I
A(hR; (SLKI)) S A(hi; (sK)), ' (sK) e U. (4.4.9)

Lemma 4.4.3 implies that (4.4.8) is satisfied if and only if hRKL = Cs L for c * 0, so we need

to establish that, given hRKL = CsL, (4.4.9) holds if and only if (4.4.7) holds. Since A is con- 3
vex on U for fixed h E F(K(U)), (4.4.7) holds if and only if, for every (sK) e U,

tim (hR; (smKo)) - A(hR; (SLK)] Z! 0

where (s,,,K,) is defined in the usual way. But if hRKL = CSL, then

A(hR; (SLKL0) \S L, S // "j R1 - hRKLht

= Cs2 h= L, hR/

and I
U
I

I
I
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li3a-- A(hR; (stKa )) - A(hR; (SL.K)) = hj R h

3a\ 1 h 2 + 2a(l-a) (s h ISL, h\ + (l--a)2 SL, hR/
lim L Is hh,,,h[- C RhRKah C R7Rt

I~ s 2h .sL7h \+ li~ h~-~RQh)

2 / R/ 2 \LhRrn- L,hRa- /hRK,
s- h \, , It + hca

c "ShR/ 7 hR- \hK, Ri

3I2s, h'R\/-S L, h'R)\-hRK, h'R)\(s, iR/ R i -hit, hR/-

3 Hence, if hRKL = CSL, (4.4.9) holds if and only if (4.4.7) holds, and the theorem follows. a

3 We also have the following corollary, which is analogous to Corollary 4.3.6.

Corollary 4.4.S: Suppose that (SLKL) is a least favorable pair for (F (1K (U)),UA) and

KL dominates K(U). Let hR be a matched filter for (SL,KL); that is, hRKL = CSL for some

3 c * 0. Then (hR; (SL,KL)) is a saddle point for (F (K (U)),UA).

Proof: Let h'R = - hR so that h'RK L = S L. By hypothesis, (S UK L) is a least favorable

3 pair, so, for all (sK) e U,
IAs sK \ <S, s A A* s)

A* (SKL) =sL, S L\(KL) SE() (s K ).

Since KL dominates 1K(U), it follows from Theorem 4.3.5 that h'R r lF(/K(U)) andI
I
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h'2(,, h' "\h'RK, h' 0 I
R/s R/ R/,(s,K)eU.

The result follows by applying Theorem 4.4.4. a 3
At this point, it is clear that the characteristics of a saddle point solution to the robust 3

matched filtering problem are virtually identical to those of a saddle point solution to the

robust L 2-estimation problem. Indeed, if we insist upon using normalized matched filters (i.e., 3
hRKL = S), the characteristics are the same. This being the case, we can merely observe 3
that, with the exception of Corollary 4.3.9 (the proof of which depends explicitly upon the

structure of the function M), all of the remarks, corollaries, and examples following Corollary

4.3.6 have exact analogs relating to the robust matched filtering problem. In particular, if the 3
covariance structure of the observed process is assumed to be known, so that the only uncer-

tainty is in the structure of the signal m, the existence of a robust matched filter is guaranteed.

With reference to the case in which the covariance function Kx is assumed to be known, I
it is interesting to note that the matched filter corresponding to any signal m e H (Kx) will I
be a robust matched filter for any admissible uncertainty class U in which the least favorable

signal is a multiple of m. This follows immediately from Corollary 4.4.5 and holds, in partic- I
ular, for the class U given by 3

U 1{(sKx): 1s - mIIN(K.)<e}, 3
for any 0 <E < IIMI12(K.)* This is a generalization of a more familiar result regarding 3
matched filters for signals in white noise (see [251, §III.A).3  3

3A similar result has been noted recently by Donoho and Liu in a different robustness framework [131. 3
I
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I Remark 4.4.6: For the robust matched filtering problem, the requirement' that s e H (K)

3 for all (sK) e U is not as natural as it is for the L 2-estimation problem. Although such an

uncertainty class does usually admit a rich class of signal-covariance pairs, it is sometimes the

case that the "natural" uncertainty class contains pairs for which s 4 H (K). For example, if

3 I is a Hilbert space H 0 and KO is a known covariance operator on H0 , a common uncertainty

class corresponding to signal uncertainty is of the form S x Ko}, where

S =A {s HO: IIS - SoI2 ioE}

3 for some nominal signal so and 0 < £ < IISO112ff (see (53]). If K0 is not an invertible operator,

such a set will contain signals that are not in H (Ko).

Consider the problem of finding robust matched filters for the case in which the uncer-

3 tainty class U contains pairs (sK) for which s 4 H(K). Naturally, we must restrict our

I attention to the set of filters F(U) c F( K(UZ)) that are well-defined for all signals "con-

tained in" U. That is, h = {hN}N=1 is a member of F(U) if, for every (s,K) e U,

I h e F(K), and

's, h 4 liM 'S h '/ lim .hi(N)s(t)

I is well-defined. If we seek saddle points for this problem, then, as the following lemma

3 shows, under mild regularity conditions, we can identify all possible saddle points by restrict-

ing attention to those pairs (sK) e U for which s e H(K). The proof of Lemma 4.4.7 is a

U straightforward application of the RKHS Approximation Lemma, which is given in

3 Appendix C.

U
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Lemma 4.4.7: Let I be a separable metric space and U a convex set of pairs (s ,K) such I -

that K is a continuous covariance function on I and s: I R I is continuous. Then 3

beFU) b EF(U) '\hK, 61\

if and only if s e H (K). Defining the associated admissible uncertainty class U' by 3
U.A{(s K)e U: eH(K)} I

and assuming that U' is nonempty, it follows that any least favorable pair (SLKL) for

(F(U),UA) must satisfy (SL,Kt) e U'. Hence, (hR; (SL,Kt)) is a saddle point for

(F (U),UA) only if it is also a saddle point for (F (K (U")),UA).

I
Note that the regularity conditions for Lemma 4.4.7 are not very restrictive. They are

satisfied, for example, if I is a countable set (endowed with the trivial metric), or if I is a I
separable Hilbert space H o, and U corresponds to a collection of pairs (s ,K) with s E H0  3
and K a bounded covariance operator on N o. Also note that Lemma 4.4.7 does not say that

if (hR; (SL,KL)) e F(U) x U' is a saddle point for (F (1K (U')),U',A), then it is necessarily I
a saddle point for (F(U),U A). However, in many problems of interest, this will in fact be3

true, as the following lemma indicates. The proof of Lemma 4.4.8 is given in Appendix C.

Lemma 4.4.8 Let I be a Hilbert space H0 and let U = S x 1K, where S c H0 is con-

vex with a nonempty interior and K is a convex class of covariance operators on H0 . Let I
U' A ((s,K) e U: s e H(K)}. If there exists hR e H 0 and (SL,K L) e U' such that KL is 3

I
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I strictly positive and (hR; (SL,KL)) is a saddle point for (F(K(U')),U',A), then (hR; (sL,KL))

3 is a saddle point for (F(U),UA).

g We close this section with a simple example.

Example 4.4.9: As in Example 4.3.10, let I = L 2([a ,b ]), ko be a continuous covarianc,;

function on [ab] with associated strictly positive covariance operator Ko, and s o e H(K0 ).

I Let U = S x Ko), where

SA {s L2([ab]): [s(c) - so(tC)]2dc < eIa
b

for some 0 < e < Js2()dr. As discussed above, we define U' as
a

IU {(sKD)e U:s (Ko)}

and it is obvious that U' = S' x (Ko}, where

F. 
b

S' I 4 H (Ko): i's(T) - so(r)12da T e

3 Proceeding exactly as in Example 4.3.10, we find that (h R; (SL,Ko)) is a saddle point for

3 (F(Ko),U',A), where SL and hR are defined by (4.3.14) and (4.3.17), respectively. It follows

from Lemma 4.4.8 that (h R; (SL,Ko)) is also a saddle point for (F(U),U,A).4

4This generalizes an example given in [53], in which it was shown that hR is a robust matched hiter for the3 game (L2([a ,b ]),U A). In our terminology, this corresponds to restricting the class of allowable filters to in-
clude only finite filters.

I
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4.5. Robust Quadratic Detection 3
Throughout this section, we assume that the observed process X A {X (t); t 6 i) is 3

Gaussian with mean zero. Consider the hypothesis testing problem: 3
Ho: X has covariance function KN 3

versus (4.5.1)
HI: X has covariance function KN + Ks, (

I
where K s and KN are known covariance functions on I and Ks G H (KN) 0 H(K N). This

corresponds to the problem of detecting a zero-mean Gaussian signal with covariance function U
Ks in the presence of additive, independent, zero-mean Gaussian noise with covariance func- 3
tion KN. Here again, the condition Ks e H (KN) ® H (KN) is a regularity condition and is

related to the nonsingularity of (4.5.1), as discussed in Chapter 2. In particular, this condition 1
guarantees that there exists a constant 0 < C < - such that Ks < CKN; that is, KN dominates I
Ks (see (1], §1.11).

We assume that Problem (4.5.1) is to be decided using a quadratic detector, that is, a

detector in which the test statistic CD(X) is of the form 3
D(X)-- lima iN(X) lim O ,j(N)X(t)X(tj), (4.5.2) 3

N"-i- N-i- i~j=1

where, for each N, the infinite-dimensional real matrix (ij (N)) is symmetric and has only I
finitely many nonzero elements. The limit is taken in the mean-square sense under both 3
hypotheses; that is,

I
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I lir E,[ [cD(X) - cN(X)]2) = 0, n = 0 and 1. (4.5.3)

N--)

I Note that this definition is very general and includes the more conventional examples of qua-

3 dratic statistics as special cases. Since KN dominates Ks, the limits in (4.5.3) exist if and

only if (see (3] for details)

0= lim Varo{N(X) -4DM(X)1

lim Varo0 i[O j j(N)-Oii(M)]X j)X(tj)N . - . i j=1 ) (4 .5.4)

3 =2 lim [ij(N) - ~jj(M)][Okj(N) - Oki(M)]KN(tkti)KN(ttj)},

tN.M.--. i~j=1i kJl=1

and

I 0 = lim EO{ON (X) - OM (X))

= liM fLj(N) - Ojj(M)]KN(tj,ti)NN --"*

I Recall that the space H (KN) 0 H(K N) is equivalent to the RKHS H(K2), where the

3 reproducing kernel K2: J2 x 12 __ JR is given by

I K ((tl~xl); (t2,r2)) _ KN(tj,t2)KN(T1,'T2), (tx) 1.

If we define N K I H (K 2 ) by

K('*- A  ¢jN)r((-,*); (ti,,j))

i,j=l

= O *jj(N)KN(',ti)KN(*,tj),
I i.j=l

then it follows from (4.5.4) thatI
I
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liN [lM. I-NKl - MKNIIE(K2) = O ,NM--)o

and we can define fK e H(KN) as I

DK2 (., )= lira NKN(,)= r j(N)KN(',t)KN(,tj)

Clearly then, corresponding to any statistic 4D(X) of the form (4.5.2), there exists a sym-

metric filter 0 e F(K2). The term symmetric refers to the fact that 0 = {N )'1, where,

for each finite filter 4DN, the matrix (Oi,(N)) is symmetric. Conversely, given an arbitrary

symmetric filter ( e F (K2 ), there exists a corresponding statistic 4)(X) of the form (4.5.2)

only if (4.5.5) is satisfied. This need not always be the case, but for the remainder of this I
section, we will ignore any possible convergence problems and simply assume that (4.5.5) is 3
satisfied for any filter under consideration. In any case, for the performance criterion con-

sidered here (or, for that matter, most other common criteria), the satisfaction of (4.5.5) is U
unrelated to the performance characteristics of the filter. 3

Quadratic detectors for deciding Problem (4.5.1) are often compared using the deflection

ratio, which is one member of the class of so-called generalized signal-to-noise ratios (see

[17] for a discussion of this class of performance measures). The deflection ratio for Problem 3
(4.5.1) corresponding to a test statistic 4)(X) of the form (4.5.2) with associated symmetric

filter 0e F(K 2 ) is given by I
I
I
3
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D (; (Ks 2 ))  Eo((X)J3 Var 0((X)}

i j(N)Ks(tj,t )S= ,i j=l

lim j OjOKN(tk,ti)KN(tt1Jj)

3 - ij=l kJ=1

2( DK (K2)

'(KN, (,K/\ (KAz )

We extend the definition of D to include arbitrary filters in the obvious way; that is, for any

I c 4 F(K2), we define

I Is, OKN/(K)
-((KKs, )K \ 

(4.5.6)I OKN ,KN /H(KW)

Comparing with (4.4.2), we see that the deflection ratio takes the form of a signal-to-noise

ratio, where we regard 12 as the index set, KS: 12 - R as the signal, and K2 X1 2 --+ j

3 as the covariance function.

3 It follows immediately from (4.5.6) and the Schwarz inequality that a filter

e" e F (K 2 ) satisfies

I D (c?"; (Ks,KS2 )) sup D ((; (K,K)) (4.5.7)

I
if and only if (D* K = cKs for some c * 0, and the maximum possible deflection ratio for

I Problem (4.5.1) is given by

3 D *( "; (Ks,K )) = 1/21Ks 11( 2 ).

I
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Since K s e M(KN) 0 M(KN) = H(K2), a filter D* e F(K 2 ) satisfying (4.5.7) can always U
be found. Further, if we let eT represent the "transpose" of a filter 4) e F (K2 ), defined in 3
the obvious way, then 4 ' e F(K2), and 4)KA = cKs if and only if (DTK 2 = cK s . Hence, a

filter 0* e F(K 2 ) satisfies (4.5.7) only if 0* + (0* )T does, and it follows that a symmetric

filter satisfying (4.5.7) always exists. 3
Now suppose that the pair (KSKN) is known only to belong to some set and let U 3

represent the associated set of "signal-covariance" pairs (sK), s e H(K), corresponding to

the possible values of (KsK2). The set K (U) is then the set of covariance functions I
K: 12 x 12 -+ R corresponding to the possible values of K 2 . To decide the stochastic signal 3
detection problem in the presence of these uncertainties, one might wish to use a quadratic

detector incorporating a symmetric filter O)R e F (K (U)) that satisfies 3
(K) D( 4 R; (sK)) = Su inf D((D; (sK)). (4.5.8) 1(sX) a OeF UA() (,~

We refer to an arbitrary filter O) R e F(K(U)) satisfying (4.5.8) as a robust filter for the 3
game (F (IK(U)),U,D). If OR is also symmetric, we refer to it as a robust symmetric filter. 3

As usual, to find a robust filter we search for a saddle point

(O) R; (S LXK0) e F(K(U)) x U satisfying

D (4; (s LX )) <-D ((R; (s LX)) < D ((NR;(sK)), '0 4)e F (K (U)), (sK) e U. I
(4.5.9)

It follows immediately (as in Lemma 4.4.3) that (OR; (sL,KO) is a saddle point for

(F(K(U)),U,D) only if )RKL = CSL, c * 0, and 3
D* (SL,KL) S: D* (sK), V (sK) e U, I

I
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I where

3 D*(sK) A su U)) D(D; (sK)) = 1 llsll(K). (4.5.10)

3 Further, it is easy to see that, for any D e F (K (U)),

3 D(C;(sK))<D((0 +OT);(s,K)), V(sK)r U,

which implies that (OR; (sLKL)) is a saddle point for (F(K(U)),U ,D) only if

(( R + 0(R); (SLKL)) is also a saddle point. Hence, robust filters corresponding to saddle

3 points for (F(K(U)),UD) can always be taken to be symmetric.

3 Now suppose that the noise covariance KN is assumed to be known but that K s is

known only to belong to a convex set S c H (K2). The set

U~ { (s K2):s S S}

is then an admissible uncertainty class defined on the index set 12. Hence, the problem of

finding robust filters for (F (KN2 ),U,D) is identical in form to that of finding robust matched

3 filters when the noise covariance is known and the deterministic signal belongs to some con-

3 vex set. It follows by an argument analogous to that given in Corollary 4.3.8 that a robust

symmetric filter for (F(K2),UD) exists and can be chosen to satisfy CRKN = SL, where SL

3 is the unique element of S" (the closure of S in H (K 2 )) with minimum norm.

3 If KN is not assumed to be known, the situation is somewhat more complicated. In this

case, the set U will not generally be convex, and we cannot apply the results of previous sec-

tions. However, if we let U' A co(U) (the convex hull of U), then it is easy to see that U'

3 is an admissible uncertainty class on the index set 12. The problem of finding robust filters

I
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for the game (F(1K(U'),U',D) thus takes the form of the robust matched filtering problem I
discussed in Section 4.4, and we can apply previous results to the search for saddle points. 3
Since U' = co(U), we again have, for all () e F ( (U')),

D ((,; (sg)) -5 D (((D + OT); (s )(s ) U', U

and it follows that robust filters corresponding to saddle points for (F(f((U ')),U',D) can be I

taken to be symmetric. 3
It is true, of course, that a saddle point for (F (K (U ')),U ',D) need not be a saddle point

for the original problem (F(K(U )),UD). However, if ((DR; (SL,KL)) is a saddle point for

(F (1K (U ')),U ',D ), then it follows from (4.5.9) and (4.5.10) that 3
o0< 11S LlI (KL) = D (OR; (s LX[)) S D (OR; (sK)), 'V (sK) e U. 3

Hence, the performance of the filter (DR (as measured by the deflection ratio) is bounded 3
below by N1 (ls ll~j() for all (sK) E U. In this respect, OR remains robust for the smaller

problem (F (K (U)),U ,D) although it is possible that there are yet other filters whose worst- I
case performance over U strictly exceeds that of OR. 3

To illustrate the robust quadratic detection problem, we consider the following simple 3
example in which the covariance function of the stochastic signal is assumed to be known.

For the sake of convenience, we consider a set U' that is larger than co(U). I

Example 4.5.1: Let I = Z, the set of integers and let Ql = [-Tt,Tt]. Suppose that the 3
zero-mean, Gaussian signal has known covariance function Ks satisfying

[Ks(i) < .
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I Note that this implies that the signal is a nonstationary process. Let a be the (necessarily

3 symmetric) two-dimensional Fourier transform of the covariance function Ks; that is,

E L 2( Q2) and

Ks(mn) =4 fe ei o(o) d)dX, " ' (m'n) E Z 2 "

Suppose that the noise process is a zero-mean stationary Gaussian process with covari-

ance function KN having power spectral density v that is known only to satisfy

I f v(0)dc = p, (4.5.11)I
and

v/(0) _ v(0) < vU(CO), 0 e (4.5.12)

Iwhere v, and v. are known functions satisfying

0 < inf v,(w) < sup (0) < ,

* and

f v, (o) ( p < fjv (co)d c.

3 Corresponding to any power spectral density v satisfying (4.5.11) and (4.5.12), we have

K2((m I,n 1); (m 2,n 2)) = KN(ml,m2)KN(n j,n 2) = ee2 .X

3 and it follows that the set U is given by

I
I
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U L J(sK): s = Ks and K((ml,n 1); (m2,n2)) = f feiagM-m2)ei n1-n )v(co)v(X)dodX,

where v/(o)) < v(co) v. (w) and -L fv(o)d o) = p}2x Q I
For this problem then, it is convenient to take the set U' : co(U) to be

U' _4 ,(sK): s = K s and K((m1 ,n1); (m 2,n 2)) = 0e5Lml-m2)e eX(n , l( ,)d W ,

where v1 (c)v() < TI(w.)<5 v (CO)v () and I J(OZ)dO)=p2

and we seek a robust symmetric filter R for the game (F (K (U 1')),U',D). I

Note that every K E K (U') takes the form of a covariance function for a two-

dimensional stationary random field with power spectral density Tl satisfying 3
V1 (CO)V(:) 1 r(,O)-.) 5 vu (c)V, (), y (COX) e D2, (4.5.13)

and

I fjj1(CODX)dCOdX =p 2. (4.5.14)

Further, for every K e K(U') with power spectral density 1, the RKHS H(K) consists of 3
functions of the form (see [48], §8)

If (m,n) -- f 1... f e'an'ei "F (o, ((oX)d wdL X , (m,n) r: Z 2,  (4.5.15)

where

III () -H2 I F (<0O) (co,X)d WX < (4.5.16)

I
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I Also note that each K e K(U') dominates K(U'). In particular, if K0 e JK(U '), then

for any other K e K (U'), we have

I Kc v (c))

It follows from Corollary 4.4.5 that (ODR; (SLKL)) is a saddle point for (F(1K(U')),G',D) if

3 and only if (SL,KL) is least favorable for (F(IK(U')),U',D) and DRKL = CSL for some

c * 0. Clearly, in this case we will have SL = KS. Hence, if we can find KL e K(U ') satis-

fying

I D*(SL,KL) - 11Ns1l (KL < /4IKsl,(J) = D (SLK), ' K e K(U'),

3 (4.5.17)

then the filter (DR satisfying (DRKL = K s will be a robust filter for (F (1K (U ")),U ',D ).

3 To find KL satisfying (4.5.17), we note that, for any K e 1K(U') with power spectral

3 density TI,

3 Ks(m,n)= -- 1. ffe"ie'ei G(" (mn) e Z.

3 Since inf il(awX) > 0, it follows from (4.5.15) and (4.5.16) that K s e Ml(K) and

I ) S12(;WX)1

IK K 2 (,3 (4.5.18)

3 Hence, finding KL e )K(U') satisfying (4.5.17) is equivalent to finding the function 11L

I minimizing (4.5.18) subject to the constraints (4.5.13) and (4.5.14). This problem has been

solved in [24], where it is shown that TIL satisfies

I
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TIL(O),X) = max (V: ()V (;L), min c I a(wX) 1, V,V(w)V (i))), ' (OX) e (v2, I
if c > 0 can be found such that 3

- f f L(O,;)do)d)L = p2.

Assuming that such a c exists,5 we define the filter (R as the infinite dimensional matrix U
with entries OR given by 1

feOneiAI y doda, V (m,n) e Z 2 .TIL( , )

Since inf TIL((OX) > 0, o" e L 2(W2 ), and ( R is well-defined. Further, since - is sym- IWoe.ca 11L 1L

metric, so is (DR. Finally, for all (m ,n) e Z 2, we have 3
<DRKL(M,n) = j *RKL((Mn); (ij))3

i j=-

47C M~~i~e~ 7~1LD)X

=Ks(m,n).

It follows that OR is a robust symmetric filter for the game (F (K (U )), U',D)

4.6. Conclusion 3
In this chapter, we have investigated the application of reproducing kernel Hilbert space

theory to the problems of robust signal detection and estimation. In particular, we have

characterized minimax robust solutions for the general L2-estimation problem in the presence 3
SNote that such a c always exists for the case in which o((oX) > 0 for all (o),X) e f 2. 3

I
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I of uncertainty regarding the second-order structure of the problem. Also, we have discussed

conditions under which robust solutions to this problem are guaranteed to exist.

These results for the L 2-estimation problem are remarkably similar to results given by

Poor in [53] relating to robust matched filtering. In order to more clearly reveal the similari-

ties between the two problems, we have reformulated the robust matched filtering problem in

3 an RKHS context. Within this context, we have seen that most of our results pertaining to

robust L 2 estimation are also valid for the robust matched filtering problem. Many of these

I results can be seen to be extensions of those given in [53].

Finally, we have considered the problem of robust quadratic detection of Gaussian sig-

nals in the presence of Gaussian noise where the deflection ratio is used as a performance cri-

terion. We have shown that this problem can also be formulated in an RKHS context. Using

3 this formulation, we have shown that the robust quadratic detection problem is essentially

analogous to the robust matched filtering problem. It should be mentioned that the deflection

ratio may not be the best measure of performance for the robust quadratic detection problem.

3 While it is well known that the deflection ratio possesses certain desirable properties in

small-signal situations (see, for example, (73]), a better measure of performance in the general

case may be the so-called modified deflection ratio. A discussion of this performance measure

I in relation to the deflection ratio and other generalized signal-to-noise ratios is given in appen-

dix D. The robust quadratic detection problem incorporating the modified deflection ratio as a

performance criterion can also be formulated and analyzed in an RKHS context.

I The approach presented in this chapter, in addition to providing a unified view of the

3 problems discussed above, provides a formulation that is useful for investigating robustness

properties in other problems to which RKHS theory applies. For example, in a recent paper
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(51], Picinbono and Duvaut discuss the design of optimal linear-quadratic detection and esti- U

mation strategies in non-Gaussian situations. It appears that this problem can be reformulated 3
in RKHS terms for the purpose of designing robust linear-quadratic detectors. The structure

and analysis of the problem would undoubtedly be very similar to that presented in Section

4.5. 1
Also, many different approaches to signal reconstruction and spectrum estimation are

particular examples of a more general RKHS formulation (see, for example, [12] and [79]).

When formulated in this general setting, these problems are seen to be analogous to the gen- I
eral L 2-estimation problem. This being the case, it would seem natural to apply the minimax 3
techniques discussed in this chapter to the problem of signal reconstruction in the presence of

noisy observations. The design of robust signal reconstruction and spectrum estimation pro- I
cedures in this context is an interesting topic for further investigation. 3

I
I
I
I
I
I
I
I
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i CHAPTER 5

i CONCLUSION

i In this thesis, we have considered several different statistical signal processing problems,

and we have applied reproducing kernel Hilbert space theory to the study of each. The thesis

i is not intended to be a study of the applications of RKHS theory; our primary goal has been

to investigate the signal processing problems presented herein. Nevertheless, the work clearly

Idemonstrates that RKHS techniques can be very useful and have a broad range of application.

The thesis is divided into two principal parts. In the first part (Chapter 3), we considered

the problem of signal detection in fractional Gaussian noise. We were able to answer several

interesting questions related to this problem; for example, we gave conditions that are neces-

sary and sufficient for the problem to be nonsingular; we developed whitening filters, and we

characterized the optimal detector in terms of the likelihood ratio. We have left unanswered,

however, many equally interesting questions. For instance, we have not considered the prob-

lem of sequence detection in FGN, nor have we considered what mechanisms might be

expected to give rise to additive FGN on communication channels. In short, there is much

interesting research yet to be done with respect to this problem and with respect to other

I aspects of statistical signal processing in the presence of strongly dependent noise.

3 In second part of the thesis (Chapter 4), we studied some problems in robust detection

and estimation. Applying RKHS techniques, we characterized minimax robust solutions for

L 2 estimation, matched filtering, and quadratic detection in the presence of uncertainty regard-

3 ing the relevant statistics. We also gave some results regarding the existence of solutions to

these problems. The RKHS approach provided a general and unified framework in which to



I
112 I

analyze these problems, and we believe that it can also be profitably applied to other prob- I
lems, such as robust signal reconstruction.I

U
I
I
II I

,I

I
I
I
I
I
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I APPENDIX A

SOME LEMMAS REFERENCED IN CHAPTER 3

I
In this appendix, we state and prove several technical lemmas that were referenced in

Chapter 3. Throughout the appendix, gt will be the measure defined by (3.2.11), and AH will

3 be the subset of functions in L2(RI) defined by (3.2.12).

Lemma A.1: Iff e LI(R)cnL 2(R), thenf e AH.

Proof: Let f e L '(R) n L2(R). We must show that fi e L2(). To this end, recall

I that, since f e LI(R) n L2(R), it follows thatf e L 2(R), and, for all (o e R,

UIf CO) I = - f (t)dg

[ If(t)ldtI -<

Hence,

1 j() 12 1oI z2I d (o f 1 12 o) I - 2Hd o + f I(o)I 2 dco

I5 K2 o I12do+ f1(0 2d(

I Therefore, f e L2(.) and f e AH.

I
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Lemma A.2: Let f ,g e L 1(R) n L 2(R). Then I

X f(--w) g(-w) I1 u-2Hdo = VHH(2H-1)f (t) 's It-s I 2 -2dsdt, (A.1)

where VH is defined by (3.2.3). I
Proof: Suppose first that f and g have compact support. Then it follows straightfor- I

wardly from Young's inequality (see, [15], page 232) that

J f If(t)I I g ( I It-S 2- 2dd <. 3
Hence,

I . il

-2 o= lira f j(-) (-) I o) 1"-*2 d co I12 odd

"lim e 1f t 7  co~ot -s) -Hd o dsdt

f i ff(t) g(s) Itsfz- o(. -H d ~t

N--oo

= m Jf ff(t)(.s) [7osaIt-s I)w'l2H d ojdsdt

-- rN Nit-s Ii
=r Ji ff f (t)g (S) I t-S 12H-2 f cos(%XW-2Hdk d.
N-+.. X 0

Now, 3
X

lim Ijcos(X') - 2"dX = VH H (2H- 1),

and there exists a constant K > 0 such that, for all x > 0, I
I
!
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I
Jcos(X)X' m d IX < K.*0

i Therefore, by the dominated convergence theorem,

- - r Nit-s I
I lim f f (t)g(s) It-s 12 1 f cos()XI- 2" dX dsdt

=VHH(2H-1)f ff(t)g(s) It-s 12 1 -2dsdt,

U and (A.1) follows for f and g with compact support. To prove (A.1) for general

I f ,g e L 1(R) n L 2(R), let (fN }= and (gj } =j be defined by

fN(t) Af(t)[NV](t), te ?,

and

IgNi( t) =g ( t)l([_N] ( t) , t e JR,.

i Clearly, fNv --+ f and gv -+ g in L 1(R) and L2(R), and it follows from the proof of Lemma

3 3.2.1 that fN -+f and §gN-+j in L2(.). Since fN and gN have compact support for all N, we

get

2x ~~~~N-"*oI -Hdo=i.e fN (-<o) gN(-o) Ico I1-2Hdo

= Iim VHH(2H-1) f JfN(t)gN (S) I t-S 12H -2dSdt
NNN

i= V H (2H-- 1 t I t -S 12H -2dsdt" 0
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Lemma A.3: Llet =t e R . Then 9 spans L2(g).
iO)

Proof: Clearly, S A V/[0.t]; t e R ) spans L 2 (J ), and, since

ei- -1 I
i c (0 l0-t ]( -0)9 ¥CO G R ,

it follows from the Fourier-Plancherel theorem that S spans L 2(R). Hence, I

A g(wo) 10) 1 ol -2e 2;te R ) spans L2(g) and it is sufficient to show that

any gt can be approximated in L 2(j) by a finite linear combination of functions in S. Now,

it is straightforward to show that , e L 2(R) with inverse Fourier transform 3
gt e L 1(R) L 2 (j ) given by

____ I
g, = (x) 2-H) (")(O)( t+ I H- 11%1 H) + I(.ol( t+ , R.

Since g, e L I(R) n LN), it is clear that there exists a sequence of functions

(4n(r) a I al[Ot,](.--T)), converging to gt in L IQR) and L2 (R). It follows from the proofi=1

of Lemma 3.2.1 that §,t -. g in L 2(11), and, since I

i o,_ l I*(co) = 'ai eio VOE
i=l

the result follows. U I

I
Lemma A.4: Let [0,T] be a compact interval and, for t r [0,T], let ft be given by

fl (u)= F(H - )) i I.) /-n fzt-,,,(,_U )H -Id X, u e [0,T 1e tI
Then the set of functions (f,;: te [0,T]} spans LN[O,T]).I
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I Proof: It suffices to show that the only function in L2([0,T]) orthogonal to

3 (fe;t c [0,T]) is the zero function. To this end, let g e L 2([0,T]) and suppose that, for all

t E [0,T],

I o T
0= ff, (u) g (ui) du

0

I f(H- '2) u, -H [TI(t-u)H-/"dc 8-(u)du

I ifrnitn ihrsett ,wesetaframs l 0T10=I -/1 -- )I-u'- g(u) du .

r(H -A) 0

Hence, for all t e [0,T],

0 = ( t_-SH) ( - H (S-U)HU-"H% 8(u) du ds

I r(3/-H)rH ) 0 1-(H-/2 (su0sa
F(312:"H )F(H - h/ ) o

=u'/ -H (u)du.
0

Differentiating again with respect to t, we see that, for almost all t e [0,T],

S0= IA-H g .

I
U
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Hence, g = 0 almost everywhere in [O,T], and it follows that {f,; t e [O,T]} spans I
L2 ([0,T])" U

*1
I
I
I
I
I
I
S
I
I
I
I
I
I
I
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I APPENDIX B

3PROOF OF THEOREM 4.3.5

In this appendix, we prove Theorem 4.3.5. Throughout the appendix, I will represent an

3 arbitrary index set, U an admissible uncertainty class defined on I, 1K (U) the class of covari-

ance functions contained in U, and F (K (U)) the class of filters defined on K (U). In order

to prove Theorem 4.3.5, we will need the following technical lemmas.

I Lemma B.A: For any covariance function K defined on I and any C > 0,

5 H(CK) = 5 (K), and

% */A (K)=C ' W E(K)-

Further, if K0 and K 1 are two covariance functions on I, and K1 - CKo, then

B(K 1 ) g H(Ko), and

IIIj(Ko) < CI1IIj (K), 'f e 5(K 1).

Proof: See [1], §1.7 and §1.13. a

i Lemma B.2: If Ko and K, are covariance functions on I and K, C CK o, then

3 h e F(Ko) implies h e F(K 1 ).

Proof: Let h = (N } ':1 where hl , h2, are finite filters. Then, since CKo-KI is

nonnegative definite on I and h e F (K0),I
I
I
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0s lir IIhMKj - hNKlIIj(K,) 3M.N--+4-

- i M \.. ( (hM - h N )K , ( ' A l N ) 3
= lim C ((hM-hN)Ko, (fM-h))M,N--

im Clh MKO - hNKoIl,(Ko) I
Af.N-4m F(o

-0. 1

It follows that h e F (K 1). n I

Lemma B.3: Suppose K, < CKo and let KG = (1--t)K 0 + (xK for 0 < x < 1. Then

M (Km) = H (K0 ), and, for all ax sufficiently small, U
(1-z)K 0 c Kex c- (1--a+, F)Ko. (B.1) I

Hence, by Lemma B.1, 3
HI.,F (Ko) R II(K.): f jIH (Ko)' (B.2)

and IHI' ( (.) - I aII(K0) Ia ** 0 .

Proof: Clearly, (1-a)K o < K a < (C+1)Ko. This establishes the left-hand side of (B.1)

and implies (by Lemma B.1) that I(K,) = H(Ko) for all 0 < a < 1. Also,

(l--a+,1_)Ko - K, = (l-a-+-)Ko - (1-.)Ko - aK
= V'aro - oaK,

Hence, for all 0 < a < C- 2, K a < (l-a+,F[a)Ko, which establishes the right-hand side of (B.1)

and proves the lemma. U

I
I
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I Lemma B.4: Let KO and K1 be covariance functions such that K I < CKo. Let

3 So E H(Ko) and Ka = (l- a)K o + ocKI for 0< a < 1. Choose ho e F(K o) such that

hoKo = s o and h. e F(K.) such that h.K. = so (recall 11(Ko) = H(Kx), by Lemma B.3).

Then

3 rnli ((ho--ho)K o, (ha-ho)/ = lim IlhmKo - hoKOIj(Ko) = 0, (B.3)
a---*0 a--) F(o0=0 B3

S~and
3 lim ((ha-ho)K1 , (ha-ho)/ = lir lhK 1 - hoKiIIj(K ,) = 0. (B.4)

3 Proof: Notice first that (by Lemmas B.1 and B.3) M (K1) r 1(Ko)= H(K,). Let

ho 0 = oh '=. Then

0 lir Iso - h0 K 2 2I "

< lim -- s o - iViKoI(KO) (by (B.2))

-- illso - hoKoIlj(Ka)

* =0.

5So hoK o converges to so in H(K.) as well as in H(Ko). Further, by Lemma B.2,

F(K) = F(Ko) Q F(K 1), and it follows from an argument similar to the above that hoK1

and haK1 both converge in H1(Ko) and M (K.) as well as in 11(K 1). Hence,

I

I
I
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((ha-ho)Ko, (ha-ho)P,:5 (ha-ho)Kcx, (haho)

= "--l lhaKa - hOKajll (K.)  I
1a
-1IIhQKa - (1-a)hoKo - ZhoKll I(K.)

1 1so - (1--a)so - ahoKlIll(K.)
a2  hI. k i2
1-aII'"'1I(.a2 T--ISO - hoK lE(Ka).

(B.3) follows by letting a -+ 0 and noting that s0 - hoKl11j(K. remains bounded (by lemma I
B.3). Finally, since K 1 -C CK o, 3

0 : (a-ho)K 1, (ha-h)oP :, C \(ha 1 ho)KO, (ha-ho>

so (B.4) follows from (B.3). M I

Proof of Theorem 4.3.5: It follows immediately from lemma B.2 that hR e F (1K(U)).

By Lemma 4.3.2, M* (s K) =qo - \s, s\ (K) for (sK)e U, and by Lemma 4.3.3, M* is I
concave on U. Therefore, 5

IS L, 'B(KL) \S, S\ ( (sK) e U,

if and only if, for all (sK) e U, 
I

lir(a S 1 as SH \ (K 0,
a--o -t a Sa ( - SL( )(K -) 0,

where sa = (1--t)SL + as and Ka = (1-a)KL + t(x. Separating terms and applying Lemma

B.3, we get

I
I
I
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ira S1N(KI) 2 s \ (KL - 2 \SLLSL((K
---) a 4 g SL / x

+ .lim (S L, S LIH (K, \S L, S L/I (KL)

2 \ , hL, R/RI(KL)

+ lim1 s ]3--," L, S SIH (K.) - \S L, S L4 (KL)

Now, as in the proof of Lemma B.4, we find ha e F(K(U)) such that haKa = SL with con-

I vergence in both H(K ) and H (KL). Then

s LH (KL)=/ aK hcK aZ (Kt)
= (1_a)2 (hKL, h \ + 2ca(--a) \hK, h\ + a2tjjha11K2 ,

and

/SD S l(K)\hLKa, hU

3(1--a) a,., \ + a\h(K, h:

I Hence,

an L, S SL/N(K- L .(K -lim 1-) \hcK L, ha) + (2a-1) \haK, ha\
- cc IIhaKII2(KgO

I'hKL, h ) - \hRK, h (by Lemma B.4).

iTherefore,

lim I- I\/ R/ R -  "- -" "
I os t 4. Sa.(K) -l i L, SLy(..) ol. s roes he theorem.

I It follows that (4.3.9) holds if and only if (4.3.6) holds. This proves the theorem. U

U
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APPENDIX C I
RKHS APPROXIMATION LEMMA AND PROOF OF LEMMA 4.4.8

RKHS Approximation Lemma: Let I be a separable metric space and let (IN )"=, be a I

sequence of subsets of I that is monotone increasing (I 1 c 12 c .•) and such that N=1I~ is

dense in 1. Let K be a continuous covariance function on 1, and let KN be the restriction of 3
K to IN. Let s be a continuous function on I and let sN be its restriction to IN. If

S E H (K), then sN e H (KN) for all N and

Il HE (K) = lim IkN II8(K,).
N -*-

Conversely, if sN E H (KN) for all N, then I

lM IISNllN(Km) < 00 IN--"

only if s e H (K). 3
Proof: See (47], pp. 316-319. U 3
Proof of Lemma 4.4.8: Suppose that (hR; (SL,KL)) is not a saddle point for

(F (U ),U A). Then there exists (s,K) e U such that

A(hR; (s,K))= (hR Sl ) I

fh. SLI1jO)

< KLh RN = A(hR; (SLKL)).

Choose 0 < (z < l and let s. = (1--a)s + asL and K. = (1-a)K + aKL. It follows (see the 3
proof of Lemma 4.4.1 or [53], Property 2) that I
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I A(hR; (s.,K,.)) S (1-a)A(hR; (s,K)) + ctA(hR; (SLKL))

< A(hR; (sL,KU).

Now, since S c Mo is convex with a nonempty interior, it is easily established that the inte-

rnor points of S are dense in S. Further, since K, is strictly positive, the range of K. is

I dense in Mo. These facts imply that there exists a sequence (s,,)"= c S r) H(K.) such that

usn - s 112o -+ O. It follows that (hR, \  h and, since \ha, K h 0 ,'hSn/ o -+ hR, So CK/, R, hR/Mo > O

A(hR; (sn,,Kd) - A(hR; (sc,Ka)). Hence, there exists an sN such that (sN,Ka) E (' and

U A(h R; (sN,K.)) < A(hR; (sL,KL)).

3 This contradicts the hypothesis that (h R; (S L,KL)) is a saddle point for (F (K (U ')),U ',A). *

I
I

I
I
I
I
3
I
I
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APPENDIX D I

GENERALIZED SIGNAL-TO-NOISE RATIOS IN QUADRATIC DETECTION I

D.1. Introduction

In this appendix, we discuss some properties of the so-called generalized signal-to-noise I
ratios with regard to their use in evaluating the performance of quadratic detectors used to 3
discriminate between two Gaussian hypotheses. A somewhat more detailed discussion is

given in [6]. Throughout the appendix, X A (X(t), t e I) will represent an observed process

defined on some index set I, which is assumed to be a separable metric space. We assume 3
that X is a zero-mean, Gaussian process with one of two continuous covariance functions; the

object being to test the hypotheses:

HO: X has covariance function K o

versus (D. 1.) I
HI: X has covariance function K1 , 3

A special case of considerable practical importance is the signal detection problem, in which 3
Hi corresponds to a Gaussian signal in additive, independent, Gaussian noise, and H0  g
corresponds to noise only. In keeping with this example, we define

Ks -4 K, - K0 ;

however, one should keep in mind that, in general, Ks need not be a covariance function. We 3
assume also that Problem (D. 1.1) is nonsingular. 3

I



1 127

I It is common practice to decide Problem (D.1.1) by using a quadratic detector, that is, a

3 detector in which the test statistic c?(X) is a quadratic functional of the observed process.

Indeed, the optimal detectors6 generally take this form. Because it is difficult to evaluate the

I probabilities of error for such a detector, other measures of performance are often used.

3 Among these are the generalized signal-to-noise ratios (GSNR's), which we will represent as

a parametric family {D a, 0 < a < 1). Given any quadratic statistic 4)(X), D ,t(D) is defined

as [17]

Ia' 
(El [ D(X)} - E 0of((X)} ) 2

3(l-a)Varo{ (X)} + aVar{('(X))

where the subscripts 0 and 1 indicate expectations taken under Ho and H1, respectively. Do is

referred to as the deflection ratio, which we discussed in Section 4.5, and D 1 as the comple-

3 mentary deflection ratio. We will show that every performance measure in this class can be

represented as a ratio of inner products in a reproducing kernel Hilbert space. Such a

representation has several advantages. Apart from being mathematically appealing, it leads

3 straightforwardly to a characterization of the quadratic statistic (D (X) that maximizes D a((I)

3 for each a r [0,1]. Also, it clearly reveals one of the weaknesses of the GSNR as a measure

of performance for quadratic detectors and leads naturally to consideration of an alternative

I measure, which is superior to the GSNR in some respects.

I

6Throughout this appendix, the term "optimal detector" refers to a detector in which the test statistic 4(X)
is (with probability one) a monotone function of the likelihood ratio L(X).

I
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D.2. GSNRI Representation I

As in Section 4.5, we define a quadratic test statistic as any random variable (D(X) that

can be written in the form I
cD(X) = lim dN(X) A lir ij(N )X (ti)X(tj) (D.2.1)

N---" N---3 j=1

where ( I ) c is a sequence of observation points (depending on (D(X)), and, for each

positive integer N, the infinite-dimensional, real matrix (Oij(N)) is symmetric and has only

finitely many nonzero elements. The limit is taken in the mean-square sense; i.e., we assume 3
that, for n = 0 and 1, 3

lim E, [cZ(X) - N (X)]2 - 0. (D.2.2)

N--- 3
Now, let a e [0,1] and define K,,: 12 x 12 -+ R by

Ka((t1,'r); (t2')) - (1-a)K(t 1t, 2)K(t',t2) + ctKj(t1 t 2)K 1(t1 ,'r2). U
Clearly, each Ka is symmetric and nonnegative definite on 12 X 2. Hence, for each I
a e [0,1], there exists an RKHS il(K,,) with reproducing kernel KO'. If we let3

K A- (Ka: 0 ! a : 1), then it follows from (D.2.1) and (D.2.2) that, corresponding to each

quadratic statistic c1(X), there exists a symmetric filter ) e F (K), and (see [31 for details)

I
I
U
3
I
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(EI((X)} -Eo (X)}

(1-a)Varo(cD(X)) + aVar{cD(X))

Iim j Oj(N )KS(rjti)

2 [lim j.N)OUCN)tCl -)KoC.k,..)KoC.,.j) + cL:j .k,)Kj(tj,.j)j
I- ij=l k.1=l +)

3 { 2
l im Oj ¢(N)Ks(tijti) (D.2.3)

4 "I i.j=I

2 lira j O j(N), (N)Ka((tk,t); (tijtj))
LN-- - ij=1 k.1=1

IKs / D \ •

2Q\XK,4'Ka (Ka)

Note that in order to express Da in the final form given in Equation (D.2.3), we have used

3 the fact that K s e H (K.), which follows from the nonsingularity conditions for Problem

3 (D. 1.1), as stated in Theorem 2.1.4.

One of the obvious advantages of representing D. in the form given by (D.2.3) is that it

I leads immediately to a characterization of the quadratic statistic Ca),(X) that maximizes D ca(D)

for any given a. It appears that such a characterization was not previously known [67]. To

characterize (D.(X), notice that (D.2.3) and the Schwarz inequality together imply that

Da(4) 1/ \KS, KSIM(Ka),

with equality if and only if DKa = cK s for some c * 0. That is,I
I
I



I

130

4(X) = In c(X) 3
N --

_ lira O (N)X (t )X , (D.2.4)
N- i~j=l

maximizes D a(D) if and only if there exists c # 0, such that 3
cKs(ts) = OfKa(ts) 3

_lim a);Kct,s)
N--4- (D.2.5)

= lin Oi*(N)Ka((t,s); (gi ,tj )),
N--. i-j=l

where the limit in (D.2.5) is taken in H(Ka) (which implies pointwise convergence, as well).

Note that, even though we can always find (D( , (4 }= satisfying (D.2.5), the correspond- 3
ing (iND(X)),.1 may not converge in mean-square, so we cannot guarantee that ' (X) exists.

However, we do have

sup D3 (0) = 'K / K Ifta F tlFKJ ( SIO (K.)"

As a concrete example, let us consider the following simple problem. I
Example D.2.1: Let I = 1, 2, ... , N), and assume that K0 and K1 are positive 3

definite N x N matrices. We are looking for a N x N symmetric matrix (Da* such that the

quadratic form

cD,(X) A XT'X I
maximizes the GSNR I

[Tr cIKS] 2

2[(1-a)(Tr KoOKo0 ) + ca(Tr K 1 1K )0)]

for fixed a e [0,1]. It follows from (D.2.5) that 0,) must satisfy I

I
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I cKs = (1- a)Ko (Ko + a K  I (D.2.6)

3 for some c * 0. One solution to (D.2.6), for c = 1, is given by

I = K I Ks[(I.-l)KoKI'Ko + aK] - (D.

= [(.-a)KoKIKo + cK,]- - KI'Ko[(I-c)KoKj1 Ko + LK]IT . (D.2.7)

3 This solution was established by diagonalizing Ko and K, simultaneously, but it is easy

3 to verify directly that it satisfies Equation (D.2.6). For cc * 0, we use a matrix inversion

lemma ([30], page 19) to write

P -[(I-a)KoKI''Ko + 0tK 1 -1

- KT' -L (I-a)K IKo[(I-a)KoKI jKo + aK]-'KoKj'
aE a

_LKj' -(-a)Kj'1KOPKDKI3 a a 1

Then, for D, defined by Equation (D.2.7), we have

(1--a)Ko0 4K o + aK 1 DK 1 = (1-a)Ko(P - KI1KoP)Ko + aKI(P - K' KoP)K1U = (1--c)KoPKO - (1-a)KoK jI'KOPKO + otK 1PK1 - axKoPK1

= (1--a)KoPKo - (1-a)KoKI'KOPKo + K 1 - (1-c)KoPKo - K o

+ (1--a)KoK I'KOPKO
=K, - Ko

= KS,

3 as claimed. Verification for a = 0 is straightforward.

3 For this example, it is easy to check that

D *= D a((ct) = 1/2Tr Oa*Ks.

I
I
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The foregoing discussion reveals one of the weaknesses of the GSNR, to wit: under I
mild regularity conditions on Problem (D.1.1), there exists an optimal quadratic detector 3
incorporating a test statistic t(X), which does not generally maximize D .(0) for any

a r [0,1]. To be more specific, in [23], Kailath and Weinert have shown that if Problem I
(D.I.1) is strongly nonsingular7 (as defined in [23]), then there exists an optimal quadratic 3
detector for (D.I.1), and (Dopt (X) satisfies

(Dop, (X) = Um -OW( €, )X (t ,9PV (rf%) (D.2.8)

where

Ks(t,s) = lim j O9P'(N)K°(t tOt)Kj(s,t°P'). (D.2.9)

However, it follows from (D.2.5) that (Dp (X) maximizes D c, if and only if there exists c * 03

such that

cgs(t,s) = lim j O-OP(N)Kct((ts); (tW,t00)). (D. 2. 10)
N '-' m i.j= 1I

As a general rule, (D.2.9) and (D.2.10) will not be satisfied simultaneously, and we will be

able to find a nonoptimal quadratic statistic 4)(X) such that I3
n ((o) > Dct(Oopg).

For example, consider the following simple signal detection problem. 3
3

7Actually, by changing our definition of quadratic statistic slightly to avoid convergence problems, we
could drop this restriction. The interested reader is referred to [23] or [57] for details. In any case, this is only
an issue when I is an infinite set since (D.I.1) is always strongly nonsingular (trivially) if I is finite.

3



I

1133

Example D.2.2: Let! = 1, 2, ,N, KO = KN, and KI = KN + Ks, where KN and

K s are both N x N covariance matrices. Assuming KN is positive definite, there exists an

optimal quadratic detector with

0 opt(X) L= XT,:,op,(X),

I where the matrix t is given by

(D=p -4 Kj'SK I O -

In order for 0opt (X) to maximize D a, we must be able to find c * 0 such that

cKs = (l--)KOO~opKO + oftoK1 DPtK1

= (1--)KO(K "1 - Ki- )K0 + czKj(K "1 - Ki 1 )K1 ,

3which is possible if and only if

3a(KI~tKS)3 + (2at-c)(K j'Ks)2 + (1-c)KN1 Ks = 0. (D.2.11)

3 In particular, if the noise is white, so that KjIKs = K s , then (D.2.11) is satisfied if and only

if all of the nonzero eigenvalues of Ks satisfy

ct%2 + (20a-c)X + (1-c) = 0.

I For this example, we already know that D, defined by Equation (D.2.7) satisfies Equa-

3 tion (D.2.6) and maximizes D . Hence, if (D.2.1 1) is not satisfied, it follows that (I)* is

nonoptimal ((Da * c OI for any c * 0), and yet Da(I)) > Da((Dopt).

D.3. Alternative Performance Measure

Since it seems reasonable to want a performance measure for quadratic detectors that is

I always maximized by an optimal quadratic detector, one is led to search for alternatives to the

1
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GSNR. In light of Equations (D.2.8) and (D.2.9) vis-k-vis Equations (D.2.3) through (D.2.5) 3
a natural choice is

() '( 0 1 , KS '(K.) a .(K))(D L(() = (D.3. 1)

2 \'Ko, 0K0l).(K@00(K 1)

where KOl: 12 x 2 -- JR is defined by 3
K 01((g 1r1T); (t 2,'t)) A K 0 (t 1,t 2)K (TjT 2)" 3

The fact that D,,(4)) is well defined for any quadratic statistic O(X) (i.e.,

Ks e H (K0o) = H(Ko) @H(K1 ) and O F (K0 1)) follows easily from the mean-square

convergence in (D.2.2) and the nonsingularity conditions given in Theorem 2.1.4. U
Equation (D.3.1) and the Schwarz inequality together imply that 3

D() < I\, (K) 0 (K1),

with equality if and only if DK0 1 = cKs for some c * 0. It follows that ((X) maximizes

D (0) if and only if there exists c * 0 such that

c =~ts 0DKO1 (:S)I

= lim 0i*(N)Ko(t,ti )Kj(s ,tj).
- i.j=l

As with D(, it may be that no such 0D exists, but we always have

D = FIs ) D S, SK ) OF(K1 ). 3
Now, if Problem (D. 1.1) is strongly nonsingular, then we know that there exists an optimal 3
quadratic statistic c,,p, (X) satisfying Equations (D.2.8) and (D.2.9). Since (D.2.9) clearly

implies that OotKo = Ks in H(Ko) 0 H(K 1 ), it follows that @opt(X) maximizes D (O). a
I
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I Conversely, it follows fairly easily from the results in [23] and [57] that, even if (D. 1.1) is not

3 strongly nonsingular, a quadratic statistic (d(X) maximizes D (D) only if the corresponding

detector is optimal.

For the signal detection problem, it is easy to verify that D can be rewritten as

=(E X)- (D.3.3)3 ( hVar0o(D(X)) + 'A arr{OD(X)} - Vars[(D(X))

where Vars(4D(X)) is the variance of CD(X) when only the signal is present. In this form, it is

clear that D. is equivalent to the so-called modified deflection ratio (see [171). The denomi-

I nator in (D.3.3) can be interpreted as the average of the variance of c?(X) in the presence of

3 noise only and the variance of 4)(X) due to noise in the presence of the signal. Viewed in

this fashion, D ; becomes somewhat more intuitively appealing.

As a final remark, we note that, while it is not directly related to detector error probabil-

3 ity in any obvious way, D. may be, in general, a better predictor of detector performance

than the GSNR. In particular, for the case of slow and fast-fading channels considered by

Gardner in [16], D. displays significantly less anomalous behavior than the GSNR when

I viewed as an indicator of performance gain with increasing observation time. In general, this

3 conjecture is based on the fact that D L((D) is essentially a measure of the distance, in

H (K0) 0 H (K 1), between OK01 (suitably normalized) and the nearest constant multiple of

I Ks. To be more precise,

I
I
U
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d2 (DKo,, Ks) = inf II c1-Ko1  cKs((U
- _ceR I4oK01II

IIKS112

Iwhere 11 f is the norm in H (KO) Q H (K 1). Hence, if (I and 02 are two quadratic statistics

and

D j()) > D 1(02), 3
then

d2(01K01, Ks) < d 2(D2Ko1 , Ks).

Since the optimal test statistic is essentially defined in H (K0) H (K1) and corresponds to 3
Ks , the detector incorporating (DI can be regarded as being "closer" to the optimal detector

than the detector incorporating 02. Heuristically then, DI can be regarded as a measure of

the deviation of a quadratic detector from the optimal. On this basis, one might expect D 4 to

be a fair indicator of detector performance. (See [11] for a discussion of a similar property of I
the efficacy of nonlinear detectors for deterministic signals.) 33!

3
U
I
I
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